

Vol. 15, No. 6 Nov. , 1999

三元体系的等温溶度研究

S1(43,7 张逢星·赵 霈 ✓李 君 崔 斌 史启祯 (西北大学化学系,西安 710069)

本文首次报道三元体系 Cu(NO₃)₂-CO(NH₂)₂-H₂O(30C)和 La(NO₃)₃-CO(NH₂)₂-H₂O(25C)的 等温溶度及饱和溶液、折光率,绘制相应的溶度图及折光率-组成图。体系中发现有组成为 Cu(NO₃): · 4CO(NH₂)₂、La(NO₃)₅ · 2CO(NH₂)₂ · 3H₂O、La(NO₃)₃ · 4CO(NH₂)₂ · H₂O 和 La(NO₃)₃ · 6CO (NH₂)₂ 的 4 个新化合物相,且均为同成分溶解的化合物。通过元素分析、红外光谱分析、X-射线粉 末術射、热分析(仅对含结晶水的化合物)对其进行了表征。

铜、锌和希土金属作为植物生长所需微量元素和增产肥料,早在1935年开始就有肥效实验^[1],其对作物的增产作用已为人们所确认。开展铜、锌、镧等元素与脲、水体系相平衡研究,了 解体系中各组分的相互作用,尤其是新相的生成,不仅能丰富相化学知识还能为开发新型微量 元素复肥提供理论指导。本文报道 Cu(NO₃)₂-CO(NH₂)₂-H₂O 和 La(NO₃)₃-CO(NH₂)₂-H₂O 三元 体系的溶度和新相研究。

1 实验部分

1.1 试剂

Cu(NO₃)₂•3H₂O(A.R)、CO(NH₂)₂(A.R)均为西安化学试剂厂产品。La(NO₃)₃•6H₂O 按 文献^[2]合成。其他分析试剂及指示剂均为国产及进口试剂。

1.2 实验仪器及方法

恒温槽(自制),温度控制精度±0.05℃。WZX-型阿贝折光仪(上海光学仪器厂)。意大利产 1106 型元素分析仪。岛津 440 型红外光谱仪。TA 公司 TGA 热分析仪。Rigaku 公司 X-射线 衍射仪。

样品配制,平衡检验和取样同前报^[3,4]。

Cu²⁺含量采用碘量法测定^[5]。La³⁺含量采用 EDTA 配合滴定法测定^[5]。CO(NH₂)₂含量通过 Kjeldahl 定氮法测定^[3,4],共存硝酸根不被消化。我们实验证明在所有体系组成范围内所用

陕西省教委专项科研基金资助课题(95JK012)。

* 通讯联系人。

收稿日期:1999-01-11。 收修改稿日期:1999-03-22。

第一作者:张逢星,男,44岁,副教授;研究方向:相平衡与热力学。

第15卷

分析方法均无干扰存在。

2 结果与讨论

2.1 体系的溶度图特征

三元体系 Cu(NO₃)₂-CO(NH₂)₂-H₂O(30 C)和 La(NO₃)₃-CO(NH₂)₂-H₂O(25 C)等温溶度及 饱和溶液折光率数据见表 1。绘制成体系相图及饱和溶液折光率与组成关系见图 1-2。

表 1 Cu(NO₃)₂-CO(NH₂)₂-H₂O 和 La(NO₃)₃-CO(NH₂)₂-H₂O 体系的等温溶度数据 Table 1 Isothermal Solubility Data of Systems Cu(NO₃)₃-CO(NH₂)₂-H₂O(30 C) and La(NO₃)₃-CO(NH₃)₃-H₂O(25 C)

No	composition of	liquid phases/%	refractive index	solid phases "
	Cu(NO ₃) ₂	CO(NH ₂),		
1	60.51	0.00	1.4640	$C_{u}(NO_{3})_{2} \cdot 2.5H_{2}O$
7,8	57.45	20.46	1. 49 61	$Cu(NO_3)_2 \cdot 2.5H_2O+S_1$
19	23.45	54.18	1. 4877	$S_1 + CO(NH_2)_2$
24	0.00	55.84	1.4208	$CO(NH_2)_2$
	LE(NO ₁);	$CO(NH_2)_2$		
1	60.05	0.00	1.4510	La(NO ₃) ₃ • 6H ₂ O
6,7	62.44	12.54	1.4971	$La(NO_3)_3 \cdot 6H_2O + S_2$
16	53.28	33.65	1.5255	$S_2 + S_3$
23	45.66	46.69	1,5360	S3+S4
27	39.03	57.04	1.5413	$S_4 + CO(NH_2)_2$
37	0.00	54.02	1.4180	CO(NH ₂):

 $S_{12}Cu(NO_3)_2 + 4CO(NH_2)_2 = S_{22}La(NO_3)_3 + 2CO(NH_2)_2 + 3H_2O = S_{32}La(NO_3)_3 + 4CO(NH_2)_2 + H_2O = S_{42}La(NO_3)_3 + 6CO(NH_2)_2$

由图 1a 可见,体系 Cu(NO₃)₂-CO(NH₂)₂-H₂O 在 30 C时形成一个二元化合物,其组成可表示为 Cu(NO₃)₂·4CO(NH₂)₂。连接水点 H₂O 与化合物 S₁点,连线通过该化合物的溶度曲线,证明该化合物为同成分的溶解化合物。图 1b 所示体系饱和溶液的折光率-组成曲线与体系溶度图中点线一一对应。

从图 2(a)可以看到,体系 La(NO₃)₃-CO(NH₂)₂-H₂O 在 25℃时形成两个三元化合物和一个 二元化合物,组成分别是 La(NO₃)₃・2CO(NH₂)₂・3H₂O(S₂)、La(NO₃)₃・4CO(NH₂)₂・H₂O (S₃)、La(NO₃)₃・6CO(NH₂)₂(S₄)。体系中存在 5 支单饱线,分别对应于上述三种新相和两种组 分化合物(或其水合物)。5 支单饱线两两之交点均为低共饱型三元无变点。所形成新相均为同 成分溶解化合物,其水合度从低配位比到高配位比逐渐降低,溶解度却不断增大,这给制备高 配位数的配合物带来困难。图 2(b)为该体系折光率指数曲线、与溶度图中液相线相似,也由 5 支组成,两者之间点线一一对应,这对相关系是一佐证。

2.2 体系中新相的制备与表征

2.2.1 新相的制备与组成测定

新相 Cu(NO₃)₃,4CO(NH₂)₂的制备是在相图基础上,按计量摩尔比的 Cu(NO₃)₃,3H₂O、CO(NH₂),溶于适量 H₂O 中,搅拌平衡、所得固相用 95%乙醇洗涤、抽滤、放入盛有硅胶的干燥器中至恒重。

新相 La(NO3)3 · 2CO(NH2)2 · 3H2O 与 La(NO3)3 · 4CO(NH2)2 · H2O 的制备是按在相应单

图 1 三元体系 Cu(NOs)2-CO(NHa)2-HaO 在 30℃时的等温溶度图(a)和折光率与组成图(b) Fig. 1 Isothermal solubility diagram (a) and refractive index diagram (b) of the system $Cu(NO_3)_2$ -CO

 $(NH_2)_2 - H_2O$

图 2 三元体系 La(NO₈)₈-CO(NH₂)₂-H₂O 在 25℃时的等温溶度图(a)和折光率与组成图(b)

Fig. 2 Isothermal solubility diagram (a) and refractive index diagram (b) of the system $La(NO_3)_{3}$ -CO (NH₂)₂-H₂O at 25°C

饱区中的复体点配样,搅拌平衡,分离出固相,反复用滤纸挤压带走母液直至得到于固相样品 即为所需产物。体系中另一个化合物 La(NO₃)₃·6CO(NH₂)₂,由于所在相区含水量更少、粘度 更大、溶解度又特别大,固液相很难分离,因此未能得到纯度较高的样品。

新化合物采用化学分析法测定金属离子含量,元素分析得到配体组成,结果列于表 2。所 得结果与从相关系得到的化合物组成一致,括号中数据是化学式量计算值。

• 747 •

第15卷

 表 2
 体系中新化合物的分析数据

 Table 2
 Composition Data of the New Compounds in the Systems

 compounds
 metal/%(cald.)
 C/%(cald.)
 H/%(cald.)
 N/%(cald.)

 S1
 14.97(14.86)
 11.34(11.23)
 3.83(3.77)
 32.56(32.74)

	1	-		
Sı	14.97(14.86)	11.34(11.23)	3.83(3.77)	32.56(32.74)
S_{2}	27.93(27.83)	4.98(4.81)	2.44(2.51)	19.44(19.64)
S_3	23.56(23.82)	8.35(8.24)	3.23(3.1))	26.34(26.42)

2.2.2 新相的红外光谱分析

图 3 为新相的红外光谱图。实验采用 KBr 压片法制样,从 5000 cm⁻¹扫描到 300 cm⁻¹。

据文献^[6]所述, 脲可以通过 O 原子配位, 也可以通过 N 原子配位。前者, 在红外光谱上 表现为羰基伸缩振动频率降低, 胺基伸缩振动 频率没有明显变化; 后者则羰基伸缩振动频率 升高, 胺基伸缩振动频率降低。新相红外光谱 中羰基伸缩振动频率在 1640 cm⁻¹左右, 低于 脲的羰基伸缩振动频率 1683 cm⁻¹, 且胺基伸 缩振动频率没有明显改变, 位于 3500~3400 cm⁻¹。因此, 从红外光谱分析角度考察, 在新相 中脲是通过羰基氧原子与铜离子配位的。

2.2.3 新相的 X-射线粉末衍射分析

实验条件为 Cu 靶加石墨晶体单色器,管 压 40 kV,管流 40 mA,狭缝 DS、RS、SS 分别为 1°、0.3 mm、1°,走纸速度 8°/min。

表3分别是新相的X-射线粉末衍射数据, 实验结果表明,所有新相与相应组分化合物的 X-射线衍射图谱特征均有很大差异,也不是组 分化合物的叠加。再者,经计算机检索,也没有 找到任何一个能与所得新相完全匹配的物相 结构,进一步证明这些物质为新化合物。

2.2.4 新相的热分析

图 3 新化合物的红外光谱图

样品置于铝样品皿中,在氮气保护下以 10℃ · min⁻⁻的升温速率,从室温加热到 800 C记录 TGA 曲线。有关 TGA 热分析数据见表 4。

维普资讯 http://www.cqvip.com

• 749 •

.

.

.

	Cu(NO ₃) ₂ •	4CO(NH ₂) ₂		$La(NO_3)_3 \cdot 2CO(NH_2)_2 \cdot 3H_2O$			
No.	20	d	1/10	No.	20	đ	1/10
1	11.26	7.852	51	1	11.48	7.702	100
2	12.82	6. 900	15	2	13.66	6.477	81
3	13.06	6.773	13	3	14.50	6.104	12
4	14.06	6. 294	100	4	16.48	5.375	13
5	16.54	5.355	36	5	18.86	4. 701	23
6	17.24	5.139	38	6	20.70	4.288	7
7	21.42	4.145	17	7	22.42	3.962	20
8	25.54	3. 485	47	8	23. 04	3.857	38
9	26.18	3.401	75	9	26.00	3.424	9
10	26.94	3. 307	21	10	27.42	3.250	28
11	28.00	3.184	17	11	30.66	2.914	14
1 2	28.36	3.144	57	12	31.88	2.805	12
13	30.82	2.899	27	13	34.94	2.566	30
14	32.54	2.749	15	14	36.34	2.470	14
15	34. 68	2.585	16	15	36. 78	2.442	10
16	35. 50	2.527	8	16	39. 10	2.302	9
17	36.88	2.435	8	17	40. 46	2.228	17
18	38. 22	2.353	13	18	40.82	2.209	14
19	39. 52	2.278	14	19	42.10	2.145	11
20	41.62	2.168	12	20	44. 14	2.050	11
21	43.16	2. 094	24				
22	46.28	1.960	7				
23	47.86	1.899	8				

表 3 化合物 Cu(NO₁)₂ • 4CO(NH₂)₂和 La(NO₁)₃ • 2CO(NH₂)₂ • 3H₃O 的 X-ray 衍射数据 Table 3 X-ray Diffraction Data of Cu(NO₂)₂ • 4CO(NH₂)₁ and La(NO₁)₂ • 2CO(NH₂)₂ • 3H₂O

表 4 化合物 La(NO₃), · 2CO(NH₁); · 3H₂O 和 La(NO₃), · 4CO(NH₁); · H₂O 的 TGA 数据 Table 4 TG Data of La(NO₁), · 2CO(NH₁); · 3H₂O and La(NO₂); · 4CO(NH₁); · H₂O

	temperature band/ C	residues/ 1/6			
NO.		expt.	caled.	decomposition products	
St	80-154-168	90. 52	96.39	La(NO3)3 + 2CO(NH2)2 + H2O	
	168-252-300	71.76	71.12	$L_{B}(NO_{3})_{3} + 1/2CO(NH_{2})_{2}$	
	300-341-360	64.36	65.10	La(NO ₃) ₃	
	360-419-464	44. 41	43.46	LaONO2	
	464-514-639	32.63	32.64	1/2La ₂ O3	
S 1	180-251-336	55.07	55.71	La(NO ₃)3	
	336-403-430	43. 91	44.06	1/3La(NO3)3,2/3LaONO3	
	430-686-715	28.01	27.93	1/2La ₂ O ₈	

根据 TG 分析结果,可将新相的热分解过程表示为:

$$(S_{2})La(NO_{3})_{3} \cdot 2CO(NH_{2})_{2} \cdot 3H_{2}O \xrightarrow{-2H_{2}O} La(NO_{3})_{3} \cdot 2CO(NH_{2})_{2} \cdot H_{2}O$$

$$\xrightarrow{-1.5CO(NH_{2})_{2}, H_{2}O} La(NO_{3})_{3} \cdot 0.5CO(NH_{2})_{2} \xrightarrow{-0.5CO(NH_{2})_{2}} La(NO_{3})_{3} \xrightarrow{-N_{2}O_{5}} LaONO_{3}$$

$$\xrightarrow{-0.5N_{2}O_{5}} 0.5La_{2}O_{3}$$

$$(S_{3}) La(NO_{3})_{3} \cdot 4CO(NH_{2})_{2} \cdot H_{2}O \xrightarrow{-4CO(NH_{2})_{2}, H_{2}O} La(NO_{3})_{3} \xrightarrow{-2/3N_{2}O_{5}} 1/3La(NO_{3})_{3},$$

第15卷

 $2/3LaONO_3 \xrightarrow{-5/6N_2O_5} 1/2La_2O_3$

参考文献

- [1] Lrookov A. A., Ax. SSSR AH. CCCP, 1941, 32(9),666.
- [2] GAO Sheng-Li(高胜利), LIU Yi-Lun(刘翊纶), YANG Zu-Pei(杨祖培), Xutu(Rare Barth), 1990, 11(4), 23.
- [3] ZHANG Feng-Xing(张逢星), WEI Xiao-Lan(魏小兰), GUO Zhi-Zhen(郭志箴) et al Wuja Huuzane Xuebao (Chanese Journal of Invironse Chemistry), 1997, 13(4), 375.
- [4] WEI Xian-Lan(魏小兰), ZHANG Feng-Xing(张逢星), GUO Zhi-Zhen(郭志箴) et al Wult Huarue Xuebov(Acta Physicv-Chemica Statica), 1998,14(3),237.
- [5] Wuhan Univ. Analysis Chemissry (2th Ed)(分析化学,第二版), Beijing; Higher Education Press, 1885.
- [6] Kazuo Nakamoto Infrated and Raman Spectra of Inorganic and Coordination Compounds, 4th Ed., New York; Jonh Wiely & Sons Press, 1988, p299.

STUDY ON THE ISOTHERMAL SOLUBILITY OF THE TERNARY SYSTEMS Cu(NO₃)₂(La(NO₃)₃)-CO(NH₂)₂-H₂O

ZHANG Feng-Xing ZHAO Pei LI Jun CUI Bin SHI Qi-Zhen (Department of Chemistry, Northwest University, Xi' An 710069)

The isothermal solubilities of the ternary systems $Cu(NO_3)_2$ - $CO(NH_2)_2$ - $H_2O(30C)$ and $La(NO_3)_3$ - $CO(NH_2)_2$ - $H_2O(25C)$ have been studies. There are 4 new compounds $Cu(NO_3)_2 \cdot 4CO(NH_2)_2$, $La(NO_3)_3 \cdot 2CO(NH_2)_2 \cdot 3H_2O$, $La(NO_3)_3 \cdot 4CO(NH_2)_2 \cdot H_2O$ and $La(NO_3)_3 \cdot 6CO(NH_2)_2$ found in the systems, which are congruently to dissolve in water at room temperature. These compounds have been characterized by IR, X-ray and TGA.

Keywords :	ternazy system	phase diagram	solubility	copper nitrate
	lanthanum nitrate	uréa		