Nov., 1999

第	6	期	
1999 ⁴	軍	11	月

新研究简报

0614332

镧系四元混合阴离子配合物 $[Ce(p-MBA)_2(NO_3)(phen)]_2$

的合成和晶体结构							
	咸春	新· <u>朱龙</u> ス	见" 俞庆森	i.			
	(浙江	大学化学系,	杭州 310027) 锛	铈		
关键词, 分类号,	混合阴离子 0614.12	晶体结构	<u>配合物</u> MB	四元 3A phen	,		

镧系杂环胺三元配合物从 60 年代起至今已有丰富研究,而镧系四元混合阴离子配合物近 来引起了一些研究者关注。镧系元素与苯甲酸及其衍生物和邻菲啰啉(phen)形成的混配配合 物具有多种形式的分子构型及配位多面体,结构变化甚多,它们的四元配合物的结构变化则更 加丰富,因此此类配合物能为我们提供更多的信息。由于该类配合物有二个含芳香环的配体, 因此配合物中可以考察芳环堆积效应。我们探索合成了新的配合物[Ce(p-MBA)₂(NO₈) (phen)]₂,并解析了配合物的晶体结构。

1 实验部分

1.1 **配合物合成**

称取邻菲啰啉 0.1023 g,8-羟基喹啉 0.1534 g,p-MBA 0.7013 g,加入 10 mL 无水乙醇溶 解。另称取 Ce(NO₃)₃ · 6H₂O 0.4264 g,加入 4 mL H₂O,10 mL 无水乙醇溶解。混合上述二溶液, 室温下放置,约一周后析出晶体产物。元素分析结果为:C,51.60%; H,3.40%; N,6.38%; Ce, 21.48%; 按 Ce(p-MBA)₂(NO₃)(phen)化学式,计算值为:C,51.53%; H,3.40%; N,6.44%; Ce, 21.48%。

1.2 [Ce(p-MBA):(NO3)(phen)]: 晶体结构测定

选取尺寸为 0.20 mm×0.20 mm×0.30 mm 黄色棱柱形单晶,在 Rigaku AFC7R 衍射仪上 用石墨单色器化 Mo-Ka 射线(λ =0.071069 nm),以 ω -2 θ 扫描方式在 6°<2 θ <50°范围内共收 集衍射点 4494 个,独立衍射点 4216 个(R_{ω} =0.049),其中,可观测衍射点 4021 个[l>3.00 σ (l)]。测定温度 293±1K。衍射数据经衰减(衰减-0.43%)、Lp 吸收和第二消光(系数为 1.62219e-07)校正。重原子用 Patterson 法定出坐标。对结构进行全矩阵最小二乘法精修,其中 非氢原子进行了各向异性精修,氢原子包括其中但不精修。收敛因子 R=0.027, R_{ω} =0.037。S

收稿日期:1999-01-15。 收修改稿日期:1999-04-02。

^{*} 通讯联系人。

^{* *}现在日本京都大学合成化学和生物化学系。

第一作者:成春颖,女、27岁、博士;研究方向,配位化学和电化学。

= 1,86, (1/a)max=0,03。所有计算用 Molecular Structure Corporation 的 TEXSAN 晶体软件包进 行。

2 结果与讨论

2.1 IR 谱

IR 谱用岛津 470 仪测定, KBr 压 片。对比标题配合物与配体 p-MBA 的羧基 w=o 振动峰(1667 cm⁻¹)消 失,出现2个新的特征峰,分别对应 于 $v_{ss(c=0)} = 1553 \text{ cm}^{-1}$ 和 $v_{s(c=0)} =$ 1396 cm⁻¹,表明 p-MBA 已参与配位。 配合物中 1512 cm⁻¹吸收峰为 phen 的 δ_{N-H} ,732 cm⁻¹、846 cm⁻¹是 δ_{C-H} , 861 cm⁻¹是环伸缩振动,这些峰与自 由 phen 相比,均有一定位移^[1]。1460 cm⁻)附近的 w=c.c=N吸收峰与配位 NO、在1470 cm⁻¹处的峰部分重叠, 但与自由 phen 相比(1430 cm 一)也发 生蓝移。这些信息表明 phen 参与了 配位。配合物中在 1470 cm⁻¹、1288 cm⁻¹、1025 cm⁻¹、817 cm⁻¹处的吸 收峰为配位 NO3⁻引起,1380 cm⁻'处

图 1 标题配合物分子结构图 Fig. 1 Crystal structure of title complex

无峰,表明无自由 NO3-存在,即 NO3-参与配位。

2.2 晶体结构描述

配合物分子式为[Ce(p-MBA),(NO3)(phen)],晶体属三斜晶系,空间群 P1,晶胞参数为 a =1. 1027(4) nm, b=1.2511(5) nm, c=1.0633(3) nm, $a=106.90(3)^{\circ}$, $\beta=96.73(3)^{\circ}$, $\gamma=$ 86.85(3)°, V = 1.3937(9) nm³, Dc = 1.555 g · cm⁻³, Z = 1, F(000) = 650.00, $\mu(MoKa) =$ 16.82 cm⁻¹。分子结构见图 1,非氢原子坐标及热参数,主要键长和键角列于表 1 和表 2。

配合物呈双核结构,Ce3+为9配位。p-MBA 呈二种配位方式,二个是桥式双齿配位,另二个 是桥式三齿配位。Ce³⁺ 与 p-MBA 中氧的键长有三类,C→O(3)、Ce-O(4*)平均为 0.2429 nm, Ce-O(1)、Ce-O(2)键长平均为 0.2487 nm, Ce-O(1) 2 0.2696 nm; Ce-N(phen)键长平均为 0.2673 nm;Ce-O(NO3⁻)键长平均为 0.2574 nm。与我们已报道的配合物[Ce(CH3COO)2(NO3) (phen)]2相比[2],标题配合物中相应的键长几乎全部要缩短,联系到配合物中同一侧二个 p-MBA 中苯环构成的平面相互间成 60.74°,即有部分重叠,因此可以推断配合物中存在一定的 分子内芳环堆积作用^[4],使配合物稳定性增加^[4];而[Ce(CH₃COO)₂(NO₃)(phen)]2中无芳环堆 积作用。硝酸盐中 NO4 一般都为平面型结构,氧原子对称地配置在等边三角形顶点上⁽⁵⁾,N-O 距离为 0.121 nm;标题配合物中 NO3⁻的 N(3)-O(5),N(3)-O(6)和 N(3)-O(7)键长分别为

维普资讯 http://www.cqvip.com

• 815 •

0.1274 nm、0.1262 nm 和 0.1222 nm,表明 NO₃⁻与 Ce³⁺配位后对其影响很大,但 O(5)、O(6)、O(7)和 N(3)仍在一个平面上。标准 N=O 和 N-O 键长为 0.120 nm 和 0.140 nm^[5],因此配合物 中 N(3)-O(7)键呈双键性质,N(3)-O(5)、N(3)-O(6)介于单键和双键之间。phen 处于空间空旷 一侧,使配合物十分稳定。

表 1 非氢原子坐标和热参数 Table 1 Non-hydrogen Positional Parameters and their Thermal Parameter (nm²×10⁻²)

atom	r	y	2	Bra	atom	r	ÿ	2	Bed
Ce	0.15149(2)	0.00753(1)	0.12710(2)	2 461(6)	C(10)	0.4314(4)	-0.1440(3)	0.1192(4)	4.00/97
0(1)	0.0512(2)	0.1114(2)	-0.0230(2)	3.30(5)	C(11)	0.3729(3)	-0 1034(3)	0.3298(4)	3. 45(8)
0(2)	0.0764(3)	+0.1630(2)	0.1693(2)	3,97(6)	C(12)	0.2915(3)	0.0455(3)	0.4237(3)	3.51(8)
0(3)	0.17993(2)	-0.1199(2)	-0.0899(2)	3 64(6)	C(13)	0 0145(3)	0.1828(3)	-0.0843(3)	3.01(7)
0(4)	0.0126(2)	-0.1235(2)	-0.2318(2)	3.87(6)	C(14)	0.0793(3)	0.2902(3)	-0.0546(4)	3.41(8)
0(5)	0.2889(3)	0. (717(2)	0.2459(3)	3.99(6)	C(15)	0.1523(4)	0.3296(3)	0.0619(4)	4.8(1)
0(6)	0.3346(3)	0.0847(2)	0.0495(3)	4.35(6)	C(16)	0.2134(5)	0.4296(4)	0.0876(5)	6.3(1)
0(7)	0.4407(3)	0.2273(3)	0.1696(3)	6.04(9)	C(17)	0.2027(5)	0.4902(4)	-0.0016(6)	5.8(1)
N(1)	0.1979(3)	D. 0167(3)	0.3839(3)	3.58(7)	C(18)	0.1281(5)	0. 4516(4)	-0.1163(5)	6.5(1)
N(2)	0.3527(3)	0.0942(2)	0.2032(3)	3.39(7)	C(19)	0.0658(5)	0.3521(3)	-0.1442(4)	5.2(1)
N(3)	0.3577(3)	0.1624(3)	0.1548(4)	4.09(8)	C(20)	6.2688(7)	0.6003(5)	0.0322(8)	9.2(2)
C(1)	0.1260(4)	0.0729(4)	0.4732(4)	4.4(1)	C(21)	0.1147(3)	-0.1629(3)	-0.1972(3)	3.09(8)
C(2)	0.1406(5)	0.0710(4)	0.6058(4)	5.5(1)	C(22)	0.1634(4)	-0.2654(3)	-0.2893(3)	3.64(8)
C(3)	0.2335(5)	0.0098(4)	0.6457(4)	5.6(1)	C(23)	0.0932(6)	-0.3243(4)	-0.4010(5)	7.6(1)
C(4)	0.3127(4)	0.0505(4)	0.5561(4)	4.5(1)	C(24)	0.1401(8)	- 0.4210(5)	-0.4827(6)	10.9(2)
C(5)	0.4134(5)	-0.1162(5)	0.5916(5)	6.0(1)	C(25)	0.2555(7)	-0.4605(5)	-0.4560(6)	8.9(2)
C(6)	0.4884(5)	-0.1711(4)	0.5038(6)	6.1(1)	C(26)	0.3236(5)	- 0.4016(4)	-0.3462(5)	7.0(1)
C(7)	0.4730(4)	-0.1672(3)	0.3681(5)	4.6(1)	C(27)	0.2785(4)	-0.3055(4)	-0.2631(4)	4.B(1)
C(8)	0.5506(4)	-0.2196(4)	0.2750(5)	5 3(1)	C(28)	0.302(1)	-0.5701(7)	-0.5473(8)	17 7(4)
C(9)	0.5320(4)		0.1507(4)	5.3(1)					

表 2 晶体结构的主要键长和键角 Table 2 Selected Bond Lengths (nm) and Bond Angles(^{*})

bood	dist.	tiond	dist.	bond	dıst.	bond	dist.		
Ce-O(1)	0.2467(2)	Ce-O(5)	0.2549(3)	O(2)-C(13)	0.1252(4)	O(7)-N(3)	0.1222(4)		
Ce-O(1*)	0.2696(3)	Ce-O(6)	0.2599(3)	O(3)-C(21)	0.1262(4)	N(1)-C(1)	0.1324(5)		
Ce-O(2)	0.2506(3)	Ce-N(1)	0.2688(3)	O(4)-C(21)	0.1262(4)	N(1)-C(12)	0.1361(5)		
Ce-O(3)	0.2436(2)	Ce-N(2)	0.2658(3)	O(5)-N(3)	0.1274(4)	N(2)-C(10)	0.1318(5)		
Ce-O(4)	0.2422(3)	O(1)-C(13)	0.1276(4)	O(6)-N(3)	0.1262(4)	N(2)-C(11)	0.1376(4)		
angle	(")	ang!e	(")	angle	(*)	angle	(°)		
0(1)-Ce-O(1*)	77.85(8)	O(2)-Ce-N(1)	69.04(9)	O(1.) Ce O(4.)	75.53(8)	0(4*)-Ce-O(6)	123. 89(9)		
O(1)-Ce-O(2)	127.45(8)	O(2)-Ce-N(2)	75.50(9)	O(1')-Ce-O(5)	160.68(9)	O(4*) Ce-N(1)	75.47(9)		
O(1)-Ce-O(3)	77.69(8)	0(3) Ce 0(4")	136.73(8)	O(1')-Ce-O(6)	139.42(8)	O(4')-Ce-N(2)	136.97(9)		
0(1)-Ce-O((1")	70.98(9)	O(3)-Ce-O(5)	124.25(9)	O(1*)-Ce-N(1)	109.27(8)	O(5)-Ce-O(6)	49.59(9)		
O(1)-Ce-O(5)	91.04(8)	O(3)-Ce-O(6)	74.75(9)	O(1')-Ce-N(2)	119.70(8)	O(5)-Ce-N(1)	70.45(9)		
0(1) Ce-N(1)	142.64(9)	0(3)-Ce-N(1)	139.59(9)	0(2)-Ce-0(3)	83.56(9)	O(5)-Ce-N(2)	77.84(9)		
0(1)-Ce-N(2)	147.55(9)	O(3)-Ce-N(2)	83.62(9)	0(2)-Ce-O(4*)	92. 33(9)	O(6)-Ce-N(1)	110.13(9)		
O([')-Ce-O(2)	49.61(8)	O(6)-N(3)-O(7)	122.4(4)	O(2)-Ce-O(5)	138.5(8)	O(6)-Ce-N(2)	72.71(9)		
$O(1^{-})-Ce-O(3)$	69.18(8)	O(4)-Ce-O(5)	85.96(9)	O(2)-Ce-O(6)	143.08(9)	N([)-Ce-N(2)	61.58(9)		

按有效离子半径与配位数的关系^[i],Ce-O、Ce-N 有效离子半径之和分别如下,氧二配位:

Ce-O 为 0. 2546 nm;氧三配位;Ce-O 为 0. 2556 nm;Ce-N 为 0. 2656 nm。与标题配合物比较 Ce-O(1*)键长大于有效离子半径之和,表明该键结合较弱。

由于甲基苯甲酸根呈桥联方式配位而使标题配合物形成双核结构。通常情况下,双(多)核 配合物能否形成,关键在于阴离子配体和中性配体的种类与数量,而与中心离子无关。配合物 中必须有以桥联方式配位的配体存在(通常为羧酸根离子),同时还要综合考虑配位空间和配 位数。希土离子最常见的配位数是8,其次是9,所含配体较多,若配合物中大分子中性配体的 数目不止一个,为减少空间阻碍,一般倾向于形成单核配合物[7.8]。与 bipy 相比, phen 更易形成 单核分子,这可能是由于 phen 刚性较强的缘故。。

- [1] ZHU Long-Guang(朱龙观), XIE Xue-Peng(谢学鹏), YU Qing-Sen(俞庆森) Wuji Huarue Xuebao (Chanese J. hurg. Chem.), 1998,14(4),418.
- [2] ZHU Long-Guang(朱龙观), YU Qing-Sen(俞庆森), XIE Xue-Peng(谢学鹏) Jiegou Huarue(Chauese J. Struct. Chem.), 1998,17(4).281.
- [3] Masuda H., Sugimori T., Odani A. et al Inorg. Chum. Acta, 1991, 180, 73.
- [4] Yamauchi O., Odani A. J. Am. Chem. Soc. 1985, 107, 5938.
- [5] Pauling L., translated by LU Jia-Xi(卢嘉锡) The Nature of Chemical Bond(化学社的性质), Shanghai; Shanghai Science and Techology Press, 1966.
- [6] Shannong R. D. Acta Cryst., 1976, A32, 751.
- [7] WANG Jun-Rui(王君瑞), DONG Nan(董 南), WU Guang(吴 光) et al Gaodeng Xuerrao Huarve Xuebao (Chem, J. Clauese University), 1991.12(10).1284.
- [8] CHENG Yi-Xiang(成义祥), LU Wei-Min(陆维敏), DONG Nan(畫 南) et al Goodeng Xuerras Huerree Xuebras (Chem. J. Chinese University), 1993,14(10),1487.
- [9] ZHANG Ying(张 颜), JIN Lin-Pei(金林培), LU Shao-Zhen(吕少哲) Wuyi Huarse Xuebao (Chinese J. Juorg. Chem.), 1997,13(3),280.

SYNTHESIS AND CRYSTAL STRUCTURE OF MIXED ANION COMPLEX OF LANTHANIDE $[Ce(p-CH_3C_6H_4COO)_2(NO_3)(phen)]_2$

XIAN Chun-Ying ZHU Long-Guan YU Qing-Sen (Department of Chemistry, Zhejuang University, Hangahou 310027)

We synthesized new mixed anion complex of lanthanide $[Ce(p-MBA)_2(NO_3)(phen)]_2$ in slightly acidic solution of ethanol and determined the single crystal structure. The title complex is triclinic, space group P1, a=1.1027(4) nm, b=1.2511(5) nm, c=1.0633(3) nm, $a=106.90(3)^{\circ}$, $\beta=1.0633(3)$ nm, $a=106.90(3)^{\circ}$, $\beta=1.0633(3)^{\circ}$, $\beta=1.0$ 96. 73(3)°, y = 86.85(3)°, 1' = 1.3937(9) nm³, $D_c = 1.555$ g · cm⁻³, Z = 1, F(000) = 650.00and $\mu(MoKa) = 16.82$ cm⁻¹. The four p-MBA ligands have two kinds of coordination modes and the coordination number of the Ce^{3+} is nine. There is some aromatic-stacking interaction in the benzene tings of two p-MBA ligands.

Keywords; mixed anions crystal structure complex

维普资讯 http://www.cqvip.com