Mn(III) Schiff 碱配合物的合成、结构及性能

李 君^{1,*} 杨术明¹ 张逢星¹ 唐宗**薰**¹ 史启祯¹ 吴锵金² 黄子祥² (¹西北大学化学系,西安 710069)

(² 中科院福建物质结构研究所,福州 350002)

合成 Schiff 碱配体 C₂₀H₄₄N₂(OH)₂(N, N ~ 双水杨醛缩邻苯二胺) 及相应的两个新 Mn(III) C₂₀H₄₄N₂(OH)₂ 配 合物[Mn(C₂₀H₄₄N₂O₂)(H₂O)(CH₃OH)]ClO₄(1) 和[Mn(C₀H₁₄N₂O₂)(C₇H₅O₂)] • CH₃CN(2)(C₇H₅O₂ 为水杨醛), 并测定了它们的晶体结构。结果表明,配合物 1 属单斜晶系,晶胞参数为: *a* = 1. 1748(7) nm, *b* = 1. 3985(7) nm, *c* = 1. 3538(4) nm, β= 92.63°, *V* = 2. 222(2) nm³,空间群为 *P*₂/*n*, *Z* = 4;配合物 2 也属单斜晶系,空间群 *P*₂/*n*, 晶胞参数: *a* = 1. 0252(2) nm, *b* = 2. 0146(3) nm, *c* = 1. 2494(4) nm, β= 111. 12(2)°, *V* = 2.407(2) nm³, Z = 4; 紫 外-可见光谱表明,配合物 1 和 2 分别在 584nm 和 592nm 处有一吸收,属于 Mn^{III}的 *d*-*d* 跃迁光谱。

关键词: Schiff 碱 锰配合物 晶体结构 分类号: 0614.7

锰在生物体系的 $O_2^{\text{vr}}(n=0-2)$ 的新成代谢过程中起着重要的作用^[1]。近年来, 人们已发现 含锰的超氧化物歧化酶 (MnSOD)、含锰过氧化氢酶 (Mn Catalase)、含锰核糖核苷酸还原酶 (MnRR) 以及含锰的光合成氧释放配合物(OEC), 并且其中都和 Mn(III) 有关^[2], 这使 Mn(III) 配合物的合成、结构及性能成为生物无机化学研究的一个重要领域。Schiff 碱具有和生物体系中 有关的 N、O 给体, 且配位环境可调。因此, 有关 Mn(III) Schiff 碱配合物的研究发展很快。已有 一些报道^[3-5], 但有关晶体结构的报道不多^[6-7]。本文用水杨醛和邻苯二胺缩合得到的 Schiff 碱 C₂₀H₁₄N₂(OH) 2 为配体, 首次制得了两个 Mn(III) Schiff 碱配合物 [Mn(C₂₀H₁₄N₂O₂) (H₂O) (CH₃OH)] ClO4(1) 和 [Mn(C₂₀H₁₄N₂O₂) (C₇H₅O₂)] • CH₃CN(2) (C₇H₅O₂ 为水杨醛配体), 并测 定了它们的晶体结构和性能。

1 实验部分

1.1 试剂和仪器

所用试剂均为分析纯,其中水杨醛为北京市旭东化工厂产品,邻苯二胺为上海五联化工厂 产品,甲醇为西安化学试剂厂产品,高氯酸锰和乙酸锰为自制。

岛津 IR-450 型红外光谱仪, 17 型 UV-Vis 分光光度计, PE 2400 型 C、H、N 元素分析仪。

1.2 配体 C20H14N2(OH)2(N,N ~ 双水杨醛缩邻苯二胺)合成

将 1.0 g(9.2 mmol) 邻苯二胺溶于甲醇中, 慢慢加入 2.3g(18.8mmol) 水杨醛的甲醇溶液, 于 80℃水浴上回流 1h, 有桔黄色沉淀生成, 冷却至室温, 抽滤, 即得粗产品, 在甲醇中重结晶。收 率 86%, 熔点 172~172.5℃。

收稿日期: 1999 06 08。收修改稿日期: 1999 07 23 陕西省教委专项基金资助项目(HF 982224)。 *通讯联系人。

第一作者:李 君,女,33岁,在职博士生;研究方向:功能配合物。

1.3 配合物[Mn(C20H14N2O2)(H2O)(CH3OH)]ClO4(1)的合成

将 2. 0g(6. 3mmol) 配体 C₂₀H₁₄N₂(OH) ² 溶入 50mL 甲醇中, 加入 0. 25g(6. 3mmol) NaOH, 使之全部溶解,随后慢慢加入 2. 3g(6. 3mmol) Mn(ClO₄) ² • 6H₂O,在室温下搅拌 2*h*,得一深棕 色均相溶液,过滤,滤液放置过夜,得深棕色块状结晶。

1.4 配合物[Mn(C20H14N2O2)(C7H5O2)] • CH3CN(2)的合成

称取 2 0g(6.3mmol) 配体 C20H14N2(OH)2 于 100mL 烧杯中,加入 40mL 甲醇,搅拌下加入 0.5g(12.6mmol) NaOH,使配体全部溶解,然后加入 1.6g(6.5mmol) Mn(O2CCH3)2•4H2O 的 水溶液,立刻有大量棕黄色沉淀生成,继续搅拌 0.5h,抽滤,沉淀用水洗涤,常温下真空干燥。将此干燥后的沉淀溶于 CH3CN 中,过滤,滤液慢慢挥发得到深棕色块状结晶。

1.5 晶体结构测定

在室温下,用RigakurAFC5R四圆衍射仪,石墨单色器单色化的MoKα(0.071069 nm)作为入射辐射,以ω/20扫描方式收集衍射数据。晶体尺寸:1为0.4×0.3×0.1mm,2为0.6×0.2×0.2mm。结构由直接法解出。全部非氢原子经Fourier合成及差值电子密度函数修正得,从差值电子密度函数并结合几何分析获得全部氢原子坐标。全部非氢原子坐标、各向异性热参数以及氢原子坐标、各向同性热参数经最小二乘法修正至收敛。所有计算均在MicroVAXII上用TEXSAN程序进行。

晶体结构分析表明,配合物 1 晶体属单斜晶系,晶胞参数为: a = 1.1748(7) nm, b = 1.3985(7) nm, c = 1.3538(4) nm, $\beta = 92.63^{\circ}$, V = 2.222(2) nm³,空间群为 P2I/n, Z = 4, $Dc = 1.55g \cdot cm^{-3}$, F(000) = 1064, $\mu(MoK\alpha) = 7.40cm^{-1}$, $I > 3^{\circ}(I) = 2572$, R = 0.055, Rw = 0.076。配合物 2 晶体也属单斜晶系,空间群 P2I/n, 晶胞参数: a = 1.0252(2) nm, b = 2.0146(3) nm, c = 1.2494(4) nm, $\beta = 111.12(2)^{\circ}$, V = 2.407(2) nm³, Z = 4, Dc = 1.47g. cm⁻³, F(000) = 1096, μ (MoK α) = 10.61cm⁻¹, $I > 3^{\circ}(I) = 3882$, R = 0.039, Rw = 0.057。

2 结果与讨论

2.1 配体和配合物组成的确定

表 1 为配体和配合物的元素分析及 IR 光谱数据。由表 1 中数据可见,配体和两个配合物 表 1 元素分析和光谱伸缩波数

	elementary analysis data(calcd.)/%			IR, ν/cm^{-1}			
comp.	C	H	N	$\nu(OH)$	$\nu(C = N)$	$\nu(CO)$	<u>ν(MnO)</u>
salophen	75.70(75.95)	5.27(5.06)	8.72(8.86)	3430	1620	-	-
1	47.84(48.41)	3.84(3.84)	4.96(5.38)	3421	1608	-	460
2	65.02(65.54)	4.10(4.14)	7.53(7.91)	-	1606	1690	460

Table 1 Elementary Analysis and Stretching Wave Number (ν) in IR

的元素分析实测值和理论值基本相符。配体 $C_{20}H_{14}N_2(OH)_2$ 分别在 3430 和 1620 em^2 出现OH 及 C= N 的伸缩振动峰。配合物 1 和 2 的 C= N 伸缩振动峰分别比配体的 C= N 伸缩振动峰红 移了 12 和 14 em^2 ,另外配合物 1 和 2 在 460 em^2 处都出现了 M nO 的伸缩振动峰,这说明配体和 锰已配位。此外,配合物 2 在 1690 em^2 处有水杨醛上 CO 的伸缩振动峰。

2.2 配合物1的晶体结构

图 1为配合物 1 阳离子的结构图。原子坐标及热参数列于表 2。主要键长及键角见表 3。 从图 1 看, 配体[C₂₀H₁₄N₂O₂]² 的 4 个配位原子从赤道平面与三价锰配位, 轴向由一分子水和 一分子甲醇上氧原子配位。由于三价锰的 d^4 电 子结构,产生 Jahr Teller 效应,使轴向配体离 Mn^{III}较远,形成一拉长的八面体,这从表 2 的键 长数据就可看出。从键角来看,除过N1-Mn1-N2键角略小外(82 c^{0}),锰和周围其他原子键角 都在 85.8~95.1°和 173.8~175.8°范围内。 N1-Mn1-N2 键角较小的原因主要是形成 Mn1-N2-C11-C16-N1五员环的影响。此 外,Mn1、N1、N2、O1、O2组成的最小二乘平面偏 离 0.00084nm。

表 2 配合物 1 的原子坐标和等价各向同性热参数

Table 2 A	tomic Coordinates	and Equivalent	Isotropic Thermal	Parameters for	Complex 1
-----------	-------------------	----------------	-------------------	----------------	-----------

atom	x	y	z	B(eq)
Mn(1)	0.35383(7)	0.37457(7)	0. 49286(6)	2.44(4)
0(1)	0.4947(3)	0.3656(3)	0.5635(3)	3.2(2)
0(2)	0.4267(3)	0.3974(3)	0.3756(3)	3.4(2)
0(3)	0.3598(4)	0.2124(3)	0.4666(3)	3.5(2)
0(4)	0.3397(3)	0.5323(3)	0.5349(3)	3.4(2)
N(1)	0.2658(4)	0.3489(4)	0.6111(3)	2.3(2)
N(2)	0.2006(4)	0.3810(4)	0.4275(4)	2.7(2)

表 3 配合物 1 的主要键长和键角

Fable 3	Selected	Bond	Lengths	and Bon	d Angles	for	Complex	1
---------	----------	------	---------	---------	----------	-----	---------	---

atom	distance/nm	atom	distance/nm
Mn(1) - O(1)	0.1878(4)	Mn(1) - O(4)	0.2287(5)
Mn(1) - O(2)	0.1865(4)	$M_{n}(1) - N(1)$	0.1978(5)
Mn(1) - O(3)	0.2297(5)	Mn(1) - N(2)	0. 1971(5)
angle	(°)	angle	(*)
O(2) - Mn(1) - O(1)	90. 9(2)	O(1) - Mn(1) - O(3)	88.9(2)
O(2) - Mn(1) - N(2)	93. 2(2)	N(2) - Mn(1) - N(1)	82.6(2)
O(2) - Mn(1) - N(1)	175.7(2)	N(2) - Mn(1) - O(4)	89.6(2)
O(2) - Mn(1) - O(4)	95.1(2)	N(2) - Mn(1) - O(3)	90. 5(2)
O(2) - Mn(1) - O(3)	91.1(2)	N(1) - Mn(1) - O(4)	85.8(2)
O(1) - Mn(1) - N(2)	175.8(2)	N(1) - Mn(1) - O(3)	88.1(2)
O(1) - Mn(1) - N(1)	93.3(2)	O(4) - Mn(1) - O(3)	173.8(2)
O(1) - Mn(1) - O(4)	90.6(2)		

2.3 配合物2的晶体结构

图 2 为配合物 2 的分子结构图, 原子坐标及热参数列于表 4, 主要键长及键角见表 5。由图 2可见, 中心锰原子以五配位形成四方锥结构, 其中锥底由配体 $[C_{20}H_{14}N_2O_2]^2$ 的 N1、N 2、O1、O2配位, 其键长同配合物 1 的相近。轴位置由水杨醛的羟基氧原子 O3 配位。其键长略长于 M n1 和O1、O2 的键长。由于五员环的限制, N(1) – M n(1) – N(2) 键角(81.40) 小于 M n1 和其周围 其他原子的键角, 这和配合物 1 中有相似的情况。在这个略为扭曲的四方锥结构中, N 1、N 2、O1、O2 组成的最小二乘平面偏离 0.00342nm, 其中 O1 和 N 2 略低于此平面, 而 O2 和 N1 略

• 87 •

高于此平面, Mn 高于此平面 0.02783nm。这和已 报道的五配位 Mn(III) Schiff 碱配合物 [Mn (salen) CI]^[8]和[Mn(tetramesalen) CI]^[6]相仿, 配 合物 2 中含有轴配位的水杨醛分子,且水杨醛的 醛基未参与配位。此外,配合物 2 的晶体结构中 还存在一个未参与配位的溶剂 CH₃CN 分子。据 文献^[9]及反应条件推测,水杨醛的配位可能是 Schiff 碱 C²⁰H¹⁴N²(OH)²在合成配合物时发生水 解而产生的。

比较配合物 1 和 2, 配合物 1 为配位阳离子, 而 2 为中性分子,前者配位原子中属于甲醇的 O (3)有 H,而后者配位的(水杨醛) O(3)失去了 H; 配合物 1 的 M n(1) - O(3)键长较配合物 2 的要长

Fig. 2 Structure of molecular of complex 1

(分别为 0. 2297, 0. 2011nm); 配合物 1 的轴向配体键长特别长, 这是此种配体易被取代的结构 条件。

表 4 配合物 2 的原子坐标和等价各向同性热参数

Table 4 Atomic Coordinates and Equivalent Isotropic Thermal Parameters for Comple	x 2
---	-----

atom	x	<u>y</u>	Z	B(eq)
Mn(1)	0.18922(3)	0.00504(2)	0.57450(3)	2.36(2)
0(1)	0.0539(2)	-0.00746(8)	0.6431(2)	3.31(7)
0(2)	0.1880(2)	-0.08563(8)	0.5419(1)	2.84(6)
0(3)	0.3684(2)	0.0143(1)	0.7105(2)	3.98(8)
0(4)	0.6755(3)	0.1119(2)	0.9541(2)	7.1(1)
N(1)	0.1545(2)	0.1024(1)	0.5664(2)	2.54(7)
N(2)	0.2736(2)	0.0281(1)	0.4580(2)	2.49(7)

表 5 配合物 2 的主要键长和键角

Table 5 Selected Bond Lengths and Bond Angles for Complex 2

atom	distance/nm	atom	distance/nm
Mn(1) = O(2)	0.1871(2)	$M_{n}(1) - N(2)$	0. 1997(2)
Mn(1) = O(1)	0.1892(2)	Mn(1) - O(3)	0.2011(2)
Mn(1) - N(1)	0.1989(2)		
angle	. (*)	angle	(*)
O(2) - Mn(1) - O(1)	91.17(7)	O(1) - Mn(1) - N(2)	160.4(1)
O(2) - Mn(1) - N(1)	164.71(9)	O(1) - Mn(1) - O(3)	03.0(1)
O(2) - Mn(1) - N(2)	92.22(8)	$N(1) \sim Mn(1) - N(2)$	81.40(8)
O(2) - Mn(1) - O(3)	101.93(8)	N(1) - Mn(1) - O(3)	92. 52(8)
O(1) - Mn(1) - N(1)	90.42(8)	N(2) - Mn(1) - O(3)	95. 18(8)

2.4 配合物1和2的紫外-可见光谱

测定了这两个配合物(1×10⁴mol·L¹)在甲醇中的紫外-可见光谱。配合物1和2分别在 584nm和592nm处有一吸收峰,对应 ε = 370L·mol¹·cm¹和 ε = 410L·mol¹·cm¹,这是 Mn^{III}的*d-d* 跃迁光谱。在以前的文献中^[7],发现类似配合物1的轴向配体远离中心离子,易发 生配体取代反应。其配位场光谱随溶剂的不同而有较大的变化。为了证实这一点,我们又测 了配合物1在不同溶剂中的紫外-可见光谱。在乙腈中,584nm处的峰变小,谱带向低频方向移

动。再将溶剂换为配位能力更强的 DM SO 和 DM F 时,这两个峰变的几乎测不到。溶剂的改变 会造成配合物 1 分子不同的极性乃至能级排布的变化,从这个实验也说明了这点。

参考文献

[1] Pecoraro V.L., Baldwin M.J., Gelasco A. Chem. Rev., 1994, 94, 807.

[2] Wieghardt K. Angew. Chem. Int. Engl., 1989, 28, 1153.

[3] Boucher L. J., Coe C. G. Inorg. Chem., 1975, 14, 1289.

[4] Ashmawy F.M. J. Chem. Soc, Dalton. Trans., 1985, 1391.

[5] Li X., Pecoraro V. L. Inorg. Chem., 1989, 28, 3403.

[6] Oki A. R., Hodgson D. J. Inorg. Chim. Acta, 1990, 170, 65.

[7] Gohdes J. W., Armstrong W.H. Inorg. Chem., 1992, 31, 368.

[8] Pecoraro V. L., Butler W. M. A cta Crystallogr., Sect. C, 1986, 42, 1151.

[9] Garciar Deibe A., Sousa A., Bermejo M. R. J. Chem. Soc., Chem. Commun, 1991, 728.

Synthesis, Structures and Properties of Mn(III) Schiff Base Complexes

LI Jun^{1,*} YANG Shur Ming¹ ZH ANG Feng-Xing¹ TANG Zong-Xun¹ SHI Qi-Zhen¹ WU Qiang-Jin² HUANG Zr Xiang²

(¹ Chemistry Department, Northwest University, Xi' an 710069)

 $(^{2}$ Fujian Institute of Research on the Structure of Matter, Chinese Academ_V of Science, Fuzhou 350002)

Mn(III) Schiff base complexes of $[Mn(C_{20}H_{14}N_2O_2) (H_2O) (CH_3OH)]$ ClO₄(1) and $[Mn(C_{20}H_{14}N_2O_2) (C_7H_5O_2)]$ • CH₃CN(2) have been synthesized and structurally characterized by X-ray method. The crystal of complex 1 belongs to monoclinic, space group P_{21}/n , with a = 1.1748(7) nm, b = 1.3985(7) nm, c = 1.3538(4) nm, $\beta = 92.63^{\circ}$, V = 2.222(2) nm³, Z= 4; The crystal of complex 2 belongs to monoclinic, space group P_{21}/n , with a = 1.0252(2) nm, b = 2.0146(3) nm, c = 1.2494(4) nm, $\beta = 111.12(2)^{\circ}$, V = 2.407(2) nm³, Z= 4. The UV-Vis spec tra have also been determined.

Keywords: Schiff base manganese(III) complex crystal structure