% & ¥ † b ¥ † î # V~

ı/* fiflŁ łŽž !! " # \$ % & ' () & * + , " -! / 0 & 1 2 3 * + " - 4 5 " -! "6%&)78"-

本文首次用碳酸铯与 直接合成新的 & 配合物。采用元素分析和化学分析法确定了配合物的 组成。用红外光谱法 热分析法和(-) 粉末衍射法进行了物理化学表征。

1 o M I 0 & tî þÄV~ sËΙ

是 - 硝基- #三唑*酮的简称 它是一种致密、耐热、高含能和钝感性炸药。 美 国、德国、澳大利亚等国家对该化合物的性质研究结果表明 含能接近于 +(炸药 各种感度 炸药^{%'}。用金属盐· 部分代替 +(可以研制出安全性能好 爆炸时产生毒 性小的混合型炸药 一直引人注目。

制成各种金属化合物 比 储存、运输、更为安全。对它的金属盐的起爆性、 爆炸性能 爆炸后产生的毒性 寻找高能钝感炸药以及催化作用等方面的研究 引起国内外火 炸药研究者的关注 是这方面的研究热点之一。宋纪蓉著" 金属配合物的研究"[%]对过渡 金属、稀土金属、轻稀碱金属的 盐的研究进行了综述。对重稀碱金属 ,和 &具有最强 碱性的阳离子与 形成的配合物至今未见报道。本文采用 & 与 直接反应合成 & 配合物。对它的组成、物理化学性质进行初步研究、获得一些很有意义的新结果。

L † s

k 4 .. N

试 剂

碳酸铯 & !江西锂厂生产"经处理\$原子吸收光谱法测定 - / 总含 量0 #1 纯度为 *1。在* 煅烧 小时 放在干燥器中冷后装瓶备用。

#三唑*酮! "按文献报道% 的方法合成 采用硝化 #三唑*酮 是由盐酸半缩脲与甲酸缩合而成。 为白色结晶 它的熔点为 23 # $^{\circ}$ C。 原料的红外光谱图符合结构基团特征。

盐酸半缩脲 甲酸 乙醇 四苯硼化钠 硝酸 硫酸等以及所用其它试剂皆为分析纯试剂。

仪 器

4-# 型元素分析仪。 - 红外光谱仪! 美国 -5 67公司 887型"。(-粉

收稿日期

教育部科技研究重点项目!

代表 胡满成 男 # 岁 副教授\$研究方向 重稀有碱金属化学。 4-2011 China Academic Journal Electronic Publishing House. All rights reserved. http://wwv

末衍射仪!日本理学公司+98,型"。热分析仪美国4-型和法国+:;7型。

L ZE

& 配合物的合成

分析方法

$C_{S_2}CO_3\% = \frac{W_2 \times 325.83}{W_1 \times 452.13 \times 2 \times V_1 / V_2} \times 100$

式中 W 称取试样重! <"

₩ &! * "# 沉淀重! <"

V 测定取用试样容积!9 "

V W < 试样配制容积!9 "

M & 分子量 * 2

M &2! __*_分子量 #*

元素分析 采用 # 元素分析仪测定 和 的含量。

² TĐ),

& • n ¥ † b ¥ Ä Ð F î

定量称取上述柠檬黄晶体进行 元素分析和 &的含量测定 结果列于表 。由表可以看出 按% & "!" 计算值与实验结果基本吻合。表明该化合物是含有一个结晶水的配合物。化学式为 & # "• 。

表 1 [Cs(NTO)(H₂O)]配合物元素分析数据

Table 1 Elemental Analytic Results of [Cs(NTO)(H₂O)]

	C%	H%	N%	Св%
calc.	8. 58	1.08	20. 01	47. 47
found	8. 81	0. 92	19. 94	47. 83

£";ö

% & "!""配合物红外光谱图见图 数据列于表。

由表 看出 主强峰有 * 2 和 2 59 [®] 中强峰有 * # 和 2 59 [®] 。与原料红外光谱相对照 明显不保持原料的特征。 环上在 * 59 [®] 59 [®] 处的羰基特征峰及在 201 59 [®] 处的羰基峰 在与 & 形成配合物后分别红移至 11 ri 259 [®] reserved 59 [®] 加及/ww

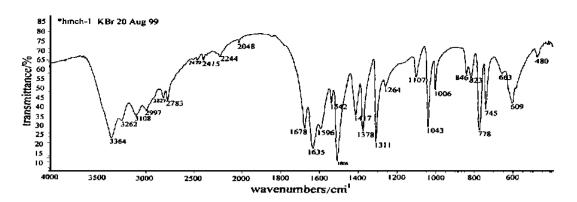
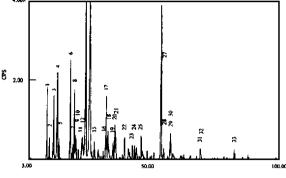


图 % &L "! "'配合物的 - 光谱图 < 6&> 7A - &6:657>6--;6 A% &L "! "'5 B; 7-;59:>;B

表 2 [Cs(NTO)(H₂O)]、NTO 和 Cs₂CO₃ 的 FT-IR 光谱数据

Table 2 FT-IR Sepectragraphic Data of NTO, Cs₂CO₃, [Cs(NTO)(H₂O)] cm⁻¹

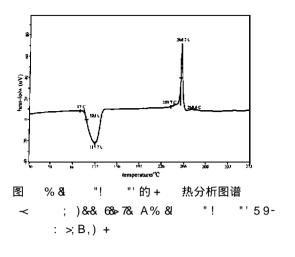
[Cs(NTO)(H ₂ O)]	NTO	Cs ₂ CO ₃	[Cs(NTO)(H ₂ O)]	NTO	Cs ₂ CO ₃
3382w	3364m	3000 ~ 3500bs	1508vs		
3380m				1450w	
3106w			1417s		
2997w	3000w		1378s		
	2990w			1360w	
2827w			1311vs		
2783w				1290w	
	2500w		1264w		
2479w				1200s	
		2470w	1107m		
2416w				1100ш	
		2300w	1043vs		1050s
	2350w		1006s	1010s	1000w
2244w			846w		
	2220w	2200m	823w	825w	830w
	2200w				770w
	2100w			790w	
2048w			778vs		
	2000w			760w	
	1860w		745s		
	1750w			725w	
	1720w	1725w		690w	
1678m			663w		
1635s			609т		
	1600w				580m
1598w				510s	
1542w			480m		

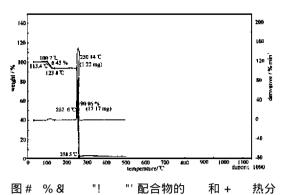

59 [@] 处 表明它们发生了配位作用。

(-) x ² T

用(-)粉末衍射仪上记录结果如图。%& "!"衍射的数据列于表。

% & "!"'的(-)粉末衍射图与 的(-)粉末衍射图相比它的主强峰有许多不同出现有 2Å和 #Å二条强的新峰而 在 Å和 2 #Å处的主强峰消失次强峰# Å和 2 #Å也消失。 & 的特征峰值也发生了变化。这些都表明形成了%& "!"配合物。


#£s



从图 + 热谱可见 % & "! "'有一个吸热宽强峰和一个尖锐的放热峰。图 #中的 和 + 谱图表明 + 曲线上的第一个吸热峰 # \mathbb{C} 与 + 曲线上的反应温度 * \mathbb{C} 完全一致。在 + 曲线上 * \mathbb{C}

表 3 [Cs(NTO)(H₂O)], NTO 和 Cs₂CO₃ 固体化合物的伦琴衍射结果
Table 3 X-ray Diffraction Result of NTO, Cs₂CO₃, and [Cs(NTO)(H₂O)] Solid Compound

[Cs(NTO)(H ₂ O)]		NT	NTO		C82CO3		[Cs(NTO)(H ₂ O)]		NTO		Cs ₂ CO ₃	
d/Å	I/I_0	d/Å	I/I_0	d/Å	I/I_0	d/Å	I / I ₀	$d/\mathring{\Lambda}$	I/I_0	$d/{ m \AA}$	I/I_0	
		8. 665	2							3. 264	40	
7. 121	6									3.215	34	
				6. 794	46			3. 164	3	3. 159	32	
6.654	2							3. 135	2			
5. 932	6									3. 025	54	
5. 466	8					2. 962	2			2. 966	32	
5. 235	2							2.860	84			
		4. 984	12							2. 846	99	
		4. 751	1							2. 789	28	
		4. 628	4							2. 696	60	
		4. 480	4							2. 622	22	
		4. 299	57			2. 613	2					
		4. 152	1	4. 152	100	2. 593	6	2.591	1			
4. 211	9							2. 560	12			
4. 026	1					2. 548	3					
3. 924	6							2. 358	5			
3. 867	2									2. 271	21	
3. 821	2							2. 214	10	2. 220	19	
				3.695	25					2.076	26	
				3.656	56					1. 922	19	
		3. 665	1			1.664	13					
		3. 607	ı			1.660	7					
3. 503	2							1. 649	2			
3. 400	2					1. 572	2					
3. 328	100			3. 331	20	1. 560	2					
3.314	72	3. 309	100					1. 425	2			

析图谱 5 B: 7-: 59: >: B.) : B+

表 4 [Cs(NTO)(H₂O)]热分析结果 Table 4 Results of [Cs(NTO)(H₂O)] by Thermoanalysis

	endot	thermic peak		exothermic peak				
DTA/°C	DTG/℃	тс∕℃	TG/W%	DTA ∕°C	DTG/℃	TG/℃	TG /W%	
115.7	113. 4	100. 7 ~ 123. 8	6. 46	266. 3	257. 6	250. 4 ~ 258. 5	84. 5	

处有一个明显的尖锐放热峰与+ 曲线上 ℃基本上相符合。热重曲线上 第一个吸热 峰在 3 2℃的热失重为 #*1 与理论含水量 #1 非常吻合。表明脱去了配合物 中一个水分子。在 #3 * ℃之间是一个很好的平台 表明这时存在热稳定的无水化合物。 第二个热失重峰在 * #3 *2 * ℃之间 失重为 2# *#1 而在 + 曲线 ℃处有一个强 的放热峰 表明该反应是在瞬间发生的爆炸作用。而且在反应后 3 ## ℃热重曲线上和差 热曲线上的基线都很平稳 残渣剩余率仅 *1 这比最终生成物为 & 的理论值# 得多。这表明 & 在爆炸反应的同时不仅 发生了分解 而且还产生了可能升华的 &化合物。这是一项非常有意义的结果。由于 &的氧化物有 2 种之多% 需要深入研究 的热行为才能加以确定。可见 & 配合物的热行为与稀土和过渡金属 配 合物的性质明显不同 8 稀土配合物一般加热到 $^{\circ}$ 剩余的是氧化物。 & 分解温度 低得多 一般在 『以下。 & 的这种特殊性能有可能在新型高能炸药中起重要作用 值得进一步深入研究。

Ó - 1 D

```
% '
     - ; < 宋纪蓉" Study on Metal Coordination Compounds of NTO! 9:; < = > *
   D_1 < C69.5; D_2 < C69.5
%'
         ; < E>
                                > 4-; < 67 Thermochinica Acta 1997 299 2
%'
    6-;;;=
                 6, >CE> = Fallung der alkalimetalle als Tetraphenylborverbindungen E;
                                                                                     G69
   1953 139
%#'
         - : < 宋纪蓉"</p>
```

?6-(>! 陈北旭" 67 Huaxue Xuebao (Acta Chimica Sinica) 1998 56

Synthesis and Characterization of [Cs(NTO)(HO)] Coordination Compound

```
EC-
                                        C-
        ;- 06; <
                            :<
           (Institute of Applied Chemistry, Shaanxi Normal University, Xi' an
          ( Institute of Salt lakes, Chinese A cademe of Science, Xian Branch, Xi' an
                                                                     #)
            ( Department of Chemical Engineering, Northwest University, Xi' an
                                                                     )
      ; 6F 5 B; -; 7-; 59: >; B A% &
                                               "' F668)87068-86B,) 657-; A
                                          "!
& >7-; F-7C & G& 59: >; BF &-B6; 7-A6B, ) ; B
                                                               6696,7; )&&; B
G>;7-7H6; )&& A &;B5C 576-16B,) - &657 85:)(-):FB6 B-A46 57-;;B
7069 ; ) &&
```

Keywords: explosive [Cs(NTO) (HO)] synthesis characterization