· 研究简报 ·

邻香草醛缩氨基酸钾 Schiff 碱及其三苄基锡(IV) 配合物的合成与表征

李五聚 史 禶 李时银* 汤俊明

(河南师范大学化学系,新乡 453002)

关键词:	三苄基锡(N)	Schiff 碱	合成	表征
41 N/4 🗖	_			

分类号: 0641.43

有机锡配合物具有明显的抗肿瘤活性,已引起化学工作者的研究兴趣^[1]。鉴于三苄基氯化 锡(W)是一种原料易得、易合成、毒性小的有机锡化合物;邻香草醛缩氨基酸钾 Schiff 碱是一类 具有重要意义的生物活性配体,两者形成的配合物,有可能表现更典型的生物活性。某些邻香 草醛缩氨基酸 Schiff 碱与过渡金属形成的配合物已有报道^[2,3],但邻香草醛缩氨基酸钾 Schiff 碱及其三苄基锡(W)配合物尚未见报道,因此,本文合成六种邻香草醛缩氨基酸钾 Schiff 碱及其 配合物,通过元素分析、IR、UV、¹H NMR 等物理化学测试,推测了它们的可能结构。抑菌和抗肿 瘤活性在测试中。

1 实验部分

1.1 药品、仪器及测试条件

邻香草醛 (C. R. SWITZERLAND),用前重蒸;甘氨酸、a-丙氨酸、*DL*-苯丙氨酸 (A. R. E. MERK); *DL*-a-n-丁氨酸 (SIGMA); *DL*-a-n-已氨酸 (J. T. BAKER); *DL*-a-蛋氨酸 (C. R. 上海试剂三厂)。 美国 PE-2400 元素分析仪,锡含量采用重量分析法测定。英国 SP3 ~ 306 IR 光 谱仪,KBr 压片,200~4000cm⁻¹ 范围。美国 PE-17UV 光谱仪,无水乙醇为溶剂。DPX-400型 ¹H NMR 谱仪,TMS 为内标。D⁶-DMSO 为溶剂。DDS-IIA 型电导仪,DMF 为溶剂,配制 10⁻³~10⁻⁴mol·L⁻¹ 溶液,温度 30℃。

1.2 原料的合成

三苄基氯化锡参照文献[4]合成。

1.3 配体及其配合物的合成

将 5mmol KOH 溶于 40mL 无水乙醇中,加入 5mmol a- 氨基酸,稍微加热搅拌使其溶解,冷却,慢慢加入邻香草醛(5mmol)的无水乙醇(20mL)溶液,室温下搅拌 1~2h,有浅黄或黄色沉 淀生成,减压抽滤,用无水甲醇和乙醚重结晶,真空干燥备用。产率 73~85%。

将 1.5mmol 邻香草醛缩氨基酸钾于 20mL 甲醇中,微热溶解,滴加 1.5mmol 三苄基氯化锡

收稿日期:1999-07-21。收修改稿日期:1999-09-16。

河南省科委基金资助项目(No. 984042200)。

^{*} 通讯联系人。

第一作者:李五聚,男,47岁,教授;研究方向:配位化学。

(W)的苯溶液(40mL),电磁搅拌,加热回流 3~4h,冷却,抽滤,减压蒸发滤液至 10mL 左右,慢慢 加入石油醚(30~60℃),析出黄色沉淀,抽滤,用 CH₂Cl₂-石油醚(30~60℃)重结晶,真空干燥。产率为 62~78%。

反应式如下:

2 结果与讨论

2.1 配合物的组成及有关性质

邻香草醛缩氨基酸钾 Schiff 碱及其三苄基锡(W)配合物的元素分析及有关性质见表 1。元素 分析表明,配合物是三苄基氯化锡(W)与邻香草醛缩氨基酸钾 Schiff 碱 1:1 的产物。配合物加热 时均慢慢氧化分解变黑。配合物不溶于水,易溶于甲醇、苯、二氯甲烷、DMF、DMSO,难溶于石 油醚、正己烷等溶剂中。摩尔电导表明,配合物在 DMF 中为非电解质。

表 1 配体及配合物的元素分析和有关性质数据

Table 1 Elemental Analysis Date and Relative Properties of the Ligands and their Complexes

annanda	elemen	tal analysis (cal	yield	m. p.	$\Lambda_{ m m}$ /			
compounds	С	Н	N	Sn	%	°C	$(\mathbf{S} \cdot \mathbf{cm}^2 \cdot \mathbf{mol}^{-1})$	
K • L-1	48.90 (48.56)	4.23(4.05)	5.52 (5.67)		85		·	
Bz ₃ SnL-1	62.15(62.02)	5.09 (4.60)	2.40(2.33)	18.91(19.79)	74	> 170	7.12	
К • L-2	50.82(50.55)	4.68(4.60)	5.42(5.36)		83			
Bz ₃ SnL-2	62.47(62.56)	5.26(5.38)	2.35(2.28)	20.02(20.83)	70	> 200	6. 77	
К·L-3	52.56(52.32)	5.13(5.09)	5.17(5.09)		76			
Bz ₃ SnL-3	63. 14(63. 07)	5.42(5.57)	2.30(2.23)	19.23(19.75)	65	> 170	4.08	
К • L-4	60.52(60.48)	5.26(5.34)	4.09(4.15)		73			
Bz ₃ SnL-4	70.08(70.15)	5.57(5.69)	2.20(2.15)	17.65(18.32)	62	> 210	7.15	
К·L-5	48.36(48.55)	4.85(4.98)	4.52(4.36)		80			
Bz ³ SnL-5	60.58(60.53)	5.52(5.49)	2.02(2.08)	17.96(18.14)	72	> 180	3.92	
К·L-6	55, 27(55, 39)	5.85(5.93)	4.58(4.08)		78			
Bz ₃ SnL-6	64. 10(64, 02)	6.08(5.95)	2.09(2.13)	18.02(18.10)	67	> 200	5.08	

2.2 红外光谱

配体及配合物的主要红外光谱数据列于表 2。自由配体在 3535~2800 之间出现弱的多重 峰归属于 $\nu_{0.H}$ 和 ν_{N-H} ,说明配体中存在分子内氢键 $(O - H \cdots N)^{[5]}$,形成配合物后,在配合物中 依然存在。配合物的酚 C-O 伸缩振动吸收峰出现在 1305~1332cm⁻¹范围,与自由配体的 (1310~1335cm⁻¹)比较^[6],没有明显差别,表明酚羟基氧原子没有参与配位。在配合物中 $\nu^{m}coor$ 和 $\nu^{s}coor$ 的间距 $\Delta\nu$ 在 240~262cm⁻¹范围内,表明羧基是单齿参与配位^[7]。自由配体在 1630~ 1645cm⁻¹出现强吸收峰可归属于 $\nu_{c=N}$ 的振动吸收 ^[8],形成配合物后,该峰向低频移动 10 cm⁻¹左右,表明亚氨基氮参与配位。配合物在低波数区域 515~565cm⁻¹及 455~460cm⁻¹处 出现新的吸收峰,分别归属于 Sn-O 和 Sn-N 的振动吸收峰 ^[9]。Sn-C 和 Sn-O 的振动吸收峰在 515~565cm⁻¹处发生简并,所以仅给出了 Sn-O 的吸收波数^[10]。

表:	2	配体及配合物的主要红外法	光谱数据
----	---	--------------	------

Table 2	Main IR Spectra	Data of the	Ligands and their	Complexes	$(\nu_{\rm max}, {\rm cm}^{-1})$
L'abre 2	main m opeen a	Dutu of the	inganas and men	Complexes	(max, cill i

entry	$\nu_{0.H}$	$\nu_{\rm C=N}$	$ u^{**}$ coo	ν^{*}_{coo}	ν _{c-0}	ν_{Su-Q}	$\nu_{\text{Sn-N}}$
1	3535 ~ 2910	1642	1615	1370	1310		
2	3200 ~ 2900	1630	1602	1340	1305	515	455
3	3100 ~ 2800	1642	1610	1364	1320	_	
4	3100 ~ 2940	1630	1605	1362	1315	550	457
5	3450 ~ 2890	1635	1625	1360	1330	-	
6	3160 ~ 2940	1625	1610	1365	1320	550	455
7	3100 ~ 2940	1630	1615	1365	1335		
8	3080 ~ 2945	1615	1610	1370	1325	550	456
9	3180 ~ 2880	1645	1614	1350	1325		
10	3100 ~ 2850	1630	1607	1370	1330	560	455
11	3060 ~ 2880	1640	1612	1362	1330	_	
12	2980 ~ 2880	1630	1610	1365	1332	565	460

2.3 紫外光谱

配体及配合物在紫外 - 可见光区的主要吸收峰列于表 3。配体在紫外 - 可见光区均出现三 个吸收峰,分别位于 235.2~250.4nm、288.4~294.4nm、417.6~419.2nm,相应的摩尔吸光系 数分别为 3.2~3.9×10³、5.3~5.6×10³、7.5~7.9×10³。前两个峰归属于苯环和亚甲胺基团 的 π - π *跃迁,后一个峰可能是亚甲胺基上氮原子的非键电子的 n- π *跃迁所致^[11]。前两个峰 的峰位在形成配合物后变化甚微,后一个峰的极大吸收波长向短波方向移动了 15~25nm,表 明亚氨基(CH = N)氮原子与金属离子之间发生部分电荷迁移所致。

2.4 核磁共振氢谱

配体及配合物的主要 'H NMR 谱数据列于表 3。自由配体 'H NMR 图上于 14.10~ 14.30ppm 显示一中宽峰可归属于 -OH 的 H 化学位移^[11],这是由于存在分子内氢键,使酚羟基 质子峰变宽,移向低场。在配合物中几乎不发生移动,表明酚羟基氧没有参与配位。配体 'H NMR 图上位于 8.21~8.25ppm 的单峰可归属于 -HC = N- 的 H 化学位移^[12],形成配合物 后,该峰明显地移向低场 (9.10~9.12ppm),这是由于亚氨基氮参与配位,使氮原子的电子云 密度大大降低,对质子产生强的去屏蔽效应所致。配体图上位于 6.42~6.82ppm 处的多重峰 归属于苯环上 H 的化学位移,形成配合物后,与苄基苯环上的 H 化学位移发生简并,不易区分 开。配体图上位于 3.70~3.72ppm 可归属于 -OCH₃ 的 H 化学位移,该峰在配合物图中基本不 变,表明 -OCH₃ 的氧原子没有参与配位。与锡原子相连的亚甲基上的质子在 2.50~2.66ppm

• 513 •

处有强的吸收峰;由于 Sn-H 的偶合作用出现了分裂,配合物的偶合常数(J_{Sn-H})分别为 78.32、78.56、74.24、73.31、75.25、77.16,这说明这些配合物在溶剂中具有类似的结构。

表 3 配体及配合物的主要 'H NMR 和 UV 谱数据

Table 3	¹ H NMR Data	(δ, ppm) a	and Electronic Sp	ectral Bands(nm) of Ligands and	Their Complexes
---------	-------------------------	------------	-------------------	-----------------	------------------	-----------------

'H NMR								ES bands	
entry	aromatic	-CH = N-	-0H	-OCH3	a-CH	-CH2-Sn	$\pi - \pi^*$	π - π^*	n-π*
1	6.83~6.40	8.21	14.10	3. 71	3.89		235. 2	294. 4	418.4
2	7. 10 ~ 6. 55	9.10	14.03	3.75	3.82	2.50	240.0	292.8	384.8
3	6. 82 ~ 6. 35	8.26	14. 20	3.70	3.82		238.4	290. 4	417.6
4	7. 12 ~ 6. 42	9.12	14.15	3.72	3.86	2.61	244.8	288.4	403. 2
5	6. 82 ~ 6. 36	8.23	14.21	3.71	3.65		244.0	291.2	417.6
6	7. 17 ~ 6. 44	9.04	14.17	3.74	3.60	2.64	250.4	293.6	407.2
7	6. 85 ~ 6. 45	8.22	14.26	3.72	3.52		250.4	292. 8	419.2
8	7. 28 ~ 6. 32	9.12	14.20	3.76	3.57	2.58	254. 2	293. 2	402.6
9	6. 87 ~ 6. 46	8.29	14.30	3.72	3.78		243.2	292.0	419.2
10	7. 15 ~ 6. 40	9.12	14.20	3.73	3.82	2.66	250.6	295.4	404.6
11	6.82~6.37	8.25	14.24	3.71	3.62		250. 4	292.8	419.2
12	7. 14 ~ 6. 30	9.06	14.15	3.75	3. 60	2.60	244. 8	288.2	401.8

综上所述,配合物中锡原子可能是五配位的,羧基氧和亚氨基氮参与配位。

参考文献

[1] Crowe A. J., Smith P. J., Atassi G. Chem-Biol. Interact., 1980, 32, 171.

[2] Guamgbin Wang, Synth. React. Inorg. Met-Org. Chem., 1994, 24, 1091.

[3] Guarggbin Wang , Synth. React. Inorg. Met-Org. Chem., 1994, 24, 623.

[4] Keiiti Sisido, Yosiyuki Takada, Liko Kinugawa J. Am. Chem. Soc., 1961, 83, 538.

[5] Biraser N. S., Roddvasanagoudar V. L., Aminabhavi T. M. Polyhedron, 1984, 3, 575.

[6] Wu Zishen, Gui Ziqi, Yen Zhenhua Synth. React. Imorg. Met-Org. Chem., 1990, 20, 335.

[7] Mala Nath, Rakesh Yadav Bull. Chem. Soc. Jpn., 1997, 70, 1331.

[8] Li Taishan(李太山), Li Zhichang(黎植昌) Huaxue Shijie(Chemieal Reagents), 1992, 14(4), 201.

[9] T. N. Srivastavs, A. K. S. Chauhan, M. Agrawal J. Inorg. Nucl. Chem., 1979, 41, 896.

[10]Xie Qinlan(谢庆兰), Xu Xiaohua(徐效华)et al Huaxue Xuebao(Acta Chimiea Sinica), 1992, 50(5), 508.

[11]K. K. Chatterjee, et al Spectrachim Acta. Sect A, 1965, 21, 1625.

[12]T. N. Strivastava, et al Synth. React. Inorg. Met-Org. Chem., 1982, 12, 705.

Sytheses and Characterization of Schiff Bases and Their Tribenzyltin (IV) Complexes

LI Wu-Ju SHI Zan LI Shi-Yin TANG Jun-Ming

(Department of Chemistry, Henan Normal University, Xinxiang 453002)

Six schiff bases derived from o-vanillin and amino acids and their tribenzyltin (IV) complexes have been synthesezed. The ligands and complexes were characterized by elemental analysis, IR, UV and ¹H NMR. The tin atom is five-coordinated in tribenzyltin (IV) complexes. There is intramolecular $Sn \leftarrow N$ of imine N atom.

Keywords:

tribenzyltin (IV)

schiff Base

synthese chai

characterization