中位 - 四(对烷氧苯基)卟啉 Co²⁺、Cu²⁺、Zn²⁺、Pb²⁺ 配合物的合成与表征

赵鸿斌 蔡 剑 林原斌* 罗志强 刘 键 宁静恒 周尽花 (湘潭大学化学化工学院,湘潭 411105)

关键词: 中位 - 四(对烷氧苯基)卟啉 金属配合物 合成 表征 分类号: 0614 0627.23

卟啉类化合物由于其独特的结构和特有的性能,使得它在众多领域受到人们的高度重视,有关研究非常活跃^[1-2]。目前液晶卟啉的研究受到广泛关注,许多液晶卟啉已经被合成出来^[3-4]。Shin-ichi 等人于 1990 年研究了两个四(*p-n-* 烷氧苯基)卟啉及其配合物的液晶性^[5], Shimizu 等人于 1993 年系统研究了四(对烷基苯基)卟啉的液晶性^[6],这些现象引起了人们对 卟啉类化合物液晶性能研究的极大兴趣。我们合成了十四种未见文献报道的新的 Co²⁺、Cu²⁺、 Zn²⁺、Pb²⁺四个系列的中位 - 四(对烷氧苯基)卟啉配合物,并通过元素分析、IR、UV、[']H NMR、 MS 等手段对配合物进行了表征,确证了其结构。合成路线及所合成的化合物如下:

化合物:Co-4、Co-6、Co-14、Co-18;Cu-5、Cu-6、Cu-14、Cu-18;Zn-14;Pb-10、Pb-12、Pb-14、Pb-16、 Pb-18。(Co、Cu、Zn、Pb 为相应金属配合物,后面的数字为烷氧基碳原子数)

1 实验部分

1.1 试剂与仪器

吡咯,化学纯(使用前新蒸);三氯甲烷,分析纯;中性 Al2O3(100~200 目),层析用;其它所

湖南省教委资助项目课题。

* 通讯联系人。

第一作者:赵鸿斌,男,39岁,副教授;研究方向:金属有机化学及有机功能材料。

收稿日期:1999-07-23。收修改稿日期:1999-11-10。

有试剂均为市售化学纯。Bruker ARX400 型核磁共振仪(CDCl₃ 为溶剂,TMS 为内标), PE-2400 型 CHN 元素分析仪, Finnigan TSQ700 型质谱仪, PE-1700 型 FTIR 红外光谱仪(KBr 压片法), 岛津 UV-256 型紫外、可见分光光度计,显微熔点测定仪(温度计未校正)。

1.2 配体(L)的合成

烷基溴的合成参照文献^[7],对烷氧基苯甲醛的合成参照文献^[8]。

在 100mL 圆底烧瓶中,加入 0.02mol 对烷氧基苯甲醛,40mL 丙酸,加热回流。滴加 1.45mL (约 0.02mol)新蒸馏的吡咯,加完后继续回流 1h。冷却至室温,加入 40mL 甲醇,放置过夜。配体 L-4、L-5、L-6 能从反应体系中呈蓝色片状固体析出,可直接抽滤,滤出物用 10mL 丙酸洗涤 两次,真空干燥得粗产物。配体 L-10~L-18 从反应体系中析出大量黑色粘稠固体,抽滤,甲醇 洗涤,真空干燥后,加入 50mL 石油醚(用 50% 硫酸处理)加热回流 1h,冷却,放置过夜。抽滤得 蓝紫色粗产物。所有粗产物可不经纯化直接用于与金属醋酸盐的配合反应。粗产物经中性 Al₂O₃ 柱层析,用 CHCl₃- 甲醇(*V*/*V*=1/5)混合溶剂重结晶。配体均为蓝紫色晶体,配体的结构 己由元素分析、IR、UV、'H NMR 及 MS 谱所证实。

1.3 配合物的合成

在 25mL 三颈瓶中,加入 0.02mmol 配体(L),5mL CHCl₃,搅拌溶解。加热回流,滴加 0.02mmol 金属醋酸盐的甲醇饱和溶液,用TLC 监测反应终点,到原料斑点消失后(约 1 ~ 2h),停止加热。加入 10mL 甲醇,使配合物呈固体析出。抽滤,滤出物溶于 CHCl₃ 后用中性 Al₂O₃ 柱 分离纯化,CHCl₃ 为洗脱剂,收集第一浓色带,蒸出溶剂,用 CHCl₃-甲醇(V/V = 1/1)混合溶剂 重结晶,得 Co²⁺、Cu²⁺、Zn²⁺、Pb²⁺配合物十四个,Co²⁺、Cu²⁺、Zn²⁺配合物均为紫红色晶体,Pb²⁺ 配合物为绿色晶体。配合物的收率及熔点见表 1。

2 结果与讨论

2.1 配合物的结构剖析

目标化合物的元素分析及 MS 数据见表 1。

cmpound	molecular formula	vield/%	m. p. /℃	results of ele	EISMS			
				C	II	N	$[M + H^*] m/Z$	
Co-4	CoC60H60N4O4	90	279 ~ 281	75.21(75.05)	6.53(6.30)	5.60(5.84)	961	
Co-6	CoC68H76N4O4	93	282 ~ 284. 5	75.83(76.15)	6.69(7.15)	5.33(5.23)	1073	
Co-14	$C_0C_{100}H_{140}N_4O_4$	88	134 ~ 135	78.80(78.95)	8.61(9.28)	3.81(3.68)	1522	
Co-18	CoC116H172N4O4	80	124 ~ 126	79.82(79.82)	9. 77(9. 93)	3.63(3.21)	1747	
Cu-5	CuC64H68N4O4	90	269. 4 ~ 271	75.58(75.30)	7.02(6.72)	5.31(5.49)	1022	
Cu-6	CuC68H76N4O4	90	259. 5 ~ 261	75.49(75.84)	6.67(7.12)	5.22(5.21)	1078	
Cu-14	CuC100H140N4O4	85	125 ~ 127	8.89(78.72)	8.97(9.26)	3.53(3.68)	1527	
Cu-18	CuC116H172N4O4	80	121 ~ 123	80.17(79.61)	10.28(9.90)	3.20(3.20)	1751	
Zn-14	ZnC100H140N4O4	83	126 ~ 128	78.96(78.63)	9.11(9.24)	3.56(3.67)	1529	
Pb-10	PbC84H108N4O4	58	162 ~ 163. 5	70.06(69.82)	7.74(7.53)	3.69(3.88)	1446	
Pb-12	PbC92H124N4O4	59	143 ~ 144. 5	70.57(70.96)	7.59(8.03)	3.27(3.60)	1558	
Pb-14	PbC100H140N4O4	52	137 ~ 138. 5	72.62(71.95)	8.33(8.45)	3.06(3.36)	1670	
Pb-16	PbC108H156N4O4	54	102 ~ 104	73.29(72.81)	9.10(8.83)	3.24(3.14)	1783	
Pb-18	PbC116H172N4O4	57	120 ~ 122. 5	73.98(73.57)	8.99(9.16)	2.79(2.96)	1895	

表 1 目标化合物的元素分析及 MS 数据

rable 1 Elementary Analysis and MS Data of Targeted Compoun	Fable 1	Elementary	Analysis	and MS	Data of	Targeted	Compound
---	---------	------------	----------	--------	---------	----------	----------

在配体 L 的 'H NMR 谱图中,吸收峰的数目相同、位置基本相同,但亚甲基氢的积分值不同,以 18L 的 'H NMR 谱图为例, δ = -2.75 的吸收单峰对应于卟啉环内的 H 原子。配合物的 'H NMR 谱图与配体的相似,但位于高场的 δ = -2.75 吸收峰消失,这说明卟啉环内的 N-H 键 已经断裂,N-M 键确已形成。目标化合物的 'H NMR 数据见表 2。

表 2 目标化合物的 'H NMR 数据

Table 2 ¹H NMR Data of Targeted Compound (δ)

compound	CH3	(CH ₂) "	CH2	CH ₂	OCH ₂	ArH-3	ArH-2	exocyclic-H
Co-4	1.05(t,12H)		2.40(m,8H)2.	90(m, 8H)	5.60(t,8H)	7.26(d,8H)	8.10(d,8H)	9.50(d,8H)
Co-6	0.98(t,12H)	1.48(m,16H)	2.37(m,8H)2.	89(m, 8H)	5.58(t,8H)	7.26(d,8H)	8.10(d,8H)	9.49(d,8H)
Co-14	0.94(t,12H)	1.37(m,80H)	2.37(m,8H)2.	86(m, 8H)	5.52(t,8H)	7.25(d,8H)	8.09(d,8H)	9.48(d,8H)
Co-18	0.89(t,12H)	1.26(m,112H)	2.31(m,8H)2.	89(m, 8H)	5.52(t,8H)	7.25(d,8H)	8.11(d,8H)	9.48(d,8H)
Cu-5	0.97(t,12H)	1.52(m,8H)	1.60(m,8H)1.	95(m,8H)	4.15(t,8H)	7.26(d,8H)	8.15(d,8H)	9.23(d,8H)
Cu-6	0.95(t,12H)	1.45(m,16H)	1.62(m,8H)1.	96(m, 8H)	4.18(t,8H)	7.25(d,8H)	8.10(d,8H)	9.21(d,8H)
Cu-14	0.88(t,12H)	1.28(m,80H)	1.56(m,8H)1.	92(m, 8H)	4.16(t,8H)	7.26(d,8H)	8.15(d,8H)	9.20(d,8H)
Cu-18	0.88(t,12H)	1.26(m,112H)	1.55(m,8H)1.	90(m, 8H)	4.14(t,8H)	7.21(d,8H)	8.10(d,8H)	9.20(d,8H)
Zn-14	0.89(t,12H)	1.29(m,80H)	1.55(m,8H)1.	99(m, 8H)	4.26(t,8H)	7.29(d,8H)	8.10(d,8H)	8.98(d,8H)
Pb-10	0.90(t,12H)	1.32(m,48H)	1.56(m,8H)1.	99(m, 8H)	4.26(t,8H)	7.26(d,8H)	8.09(d,8H)	8.98(d,8H)
Pb-12	0.90(t,12H)	1.31(m,64H)	1.55(m,8H)1.	99(m, 8H)	4.26(t,8H)	7.26(d,8H)	8.09(d,8H)	8.98(d,811)
Pb-14	0.89(t,12H)	1.29(m,80H)	1.56(m,8H)1.	99(m, 8H)	4.25(t,8H)	7.26(d,8H)	8.06(d,8H)	8.98(d,8H)
Pb-16	0.88(t,12H)	1.27(m,96H)	1.63(m,8H)1.	99(m, 8H)	4.25(t,8H)	7.28(d,8H)	8.00(d,8H)	8.98(d,8H)
Pb-18	0.88(t,12H)	1.27(m,112H)	1.56(m,8H)1.	99(m, 8H)	4.25(t,8H)	7.26(d,8H)	8.10(d,8H)	8.98(d,8H)

配体 L 系列紫外谱图的 λ_{max} 完全相同,在 190~700nm 范围内有 5 个吸收峰,分别在 423 (Soret)、519、557、593、651nm 左右。Co、Cu 配合物的 λ_{max} 分别在 415、419. 4nm,与配体相比其 λ_{max} 发生了紫移。Zn、Pb 配合物的 λ_{max} 分别在 427、467nm,与配体相比其 λ_{max} 发生了红移。目标化合物的 UV 数据见表 3。

表 3 目标化合物的 IR 和 UV 数据 Table 3 IR and UV Data of Targeted Compound

	IR/cm ⁻¹								UV(CHCl ₃)/nm	
compound	ν _{as} CH ₂	₽"CH2	<i>V</i> c≖c	δ_{as} CH ₂	$\nu_{\rm C=N}$	$\nu_{ m Ar-0}$	$\nu_{\text{C-O}}$	Vn-m	δс-н	soret
Co-4	2957	2853	1607, 1506	1464	1400	1244	1174	1002	797	414. 4, 530. 4
Co-6	2941	2862	1608, 1507	1463	1404	1242	1173	999	804	415. 0, 532. 8
Co-14	2924	2852	1600, 1506	1462	1400	1241	1174	1001	800	415. 0, 529. 6
Co-18	2921	2851	1608, 1507	1467	1396	1242	1175	1001	802	414. 4, 530. 6
Cu-5	2926	2853	1607, 1505	1466	1399	1245	1174	998	803	419. 4, 541. 4, 575. 8, 616. 4
Cu-6	2929	2958	1607, 1504	1467	1398	1245	1174	998	804	419. 4, 541. 8, 577. 2, 619. 4
Cu-14	2922	2850	1607, 1504	1463	1398	1242	1174	998	804	419. 4, 540. 4, 579. 0, 617. 0
Cu-18	2921	2856	1607, 1505	1466	1400	1248	1175	999	805	419. 4, 540. 4, 579. 0, 617. 2
Zn-14	2926	2866	1606, 1510	1470	1401	1250	1176	999	802	427. 6, 556. 4, 599. 2
Pb-10	2924	2853	1606, 1514	1468	1400	1245	1174	986	800	357. 2, 467. 6, 612. 6, 659. 8
Pb-12	2922	2852	1607, 1514	1468	1400	1245	1174	986	800	360. 8, 467. 6, 611. 6, 660. 6
Pb-14	2922	2851	1607, 1514	1468	1400	1245	1174	986	799	361. 8, 467. 6, 612. 4, 658. 6
Pb-16	2920	2852	1607, 1514	1469	1399	1245	1175	987	800	365. 8, 476. 6, 611. 6, 660. 6
Pb-18	2920	2851	1607, 1514	1468	1401	1244	1174	987	799	358. 0, 467. 8, 610. 4, 660. 0

在配体 L 的红外谱图中,特征官能团的吸收都比较明显,吸收峰的位置和峰型基本一致,只是吸收峰的强度有所不同。配合物的红外谱图与配体的基本相似,但 Co 配合物在 1001 cm⁻¹(N-Co), Cu 配合物在 999cm⁻¹(N-Cu), Zn 配合物在 997cm⁻¹(N-Zn), Pb 配合物在 986

 cm^{-1} (N-Pb)出现了中等强度的 N-M 键吸收峰,同时 3385 cm^{-1} 的 N-H 吸收峰消失。目标化合物的 IR 数据见表 3。

2.2 配合物的液晶性能

我们用 DSC 和偏光显微镜对 Co、Cu、Zn、Pb 四个系列十四个配合物的液晶性进行了研究, 发现 Co-14、Co-18、Cu-14、Cu-18、Zn-14、Pb-10、Pb-12、Pb-14、Pb-16、Pb-18 等十个配合物具有液 晶性,有确定的相变温度和相变区间。我们的研究结果表明,这四个系列配合物的烷氧基碳原 子数必须大于或等于 10 才可能具有液晶性,且在这四个系列中 Pb 系列配合物的液晶性能最 好,不但具有液晶性能的化合物多,且液晶相的相变温度区间宽。

参考文献

[1] Aroca R., Bolourchi H., Battisti D., Najafi K. Langmuir., 1993, 9, 3183.

[2] Milgron L. R. J. Chem. Soc. Perkin Trans., I, 1983, 10, 2535.

[3] Fox M. A., Gregg B. A., Bard A. J. J. Chem. Soc., Chem. Commun., 1987, 1134.

[4] Gregg B. A., Fox M. A., Bard A. J. J. Am. Chem. Soc., 1989, 111, 3024.

[5] Shin-ichi K., Motoko T. Tetrahedron Letters., 1990, 31(22), 3157.

[6] Shimizu Y., Miya M., Nagata A., Yamamoto I., Kusabayashi S. Liq. Cryst., 1993, 14(3), 795.

[7] Blatt A. H. Oragnic Synthesis Collective Vol. II(10~19), Wiley, 1955.

[8] Murengezi I., Delmas M., Gaset A. Synthetic Communications., 1988, 18(11), 1241.

Synthesis and Structure Identification of Complexes of *meso*-Tetrakis(4-alkoxyphenyl)Porphyrins with Co²⁺, Cu²⁺, Zn²⁺, Pb²⁺

ZHAO Hong-Bin CAI Jian LIN Yuan-Bin* LUO Zhi-Qiang LIU Jian NING Jin-Heng ZHOU Jin-Hua

(College of Chemistry and Chemical Engineering, Xiangtan University, Xiangtan 411105)

Synthesis of fourteen new complexes of *meso*-tetrakis(4-alkoxyphenyl) porphyrins with Co²⁺, Cu²⁺, Zn²⁺, Pb²⁺ were presented in this paper. *Meso*-tetrakis(4-alkoxyphenyl)porphyrins were prepared by condensation of 4-alkoxybenzaldehydes with pyrrole, then treated with corresponding metallic acetate to produce mentioned complexes, IR, UV, ¹H NMR, MS and elementary analysis were explored to confirm the structures of all theses new complexes. Characteristic spectrometric data of IR, UV, ¹H NMR related to these complexes have been systematically summarized. Ten of the four-teen complexes were found to exhibit liquid crystal properties.

Keywords: meso-tetrakis(4-alkoxyphenyl)porphyrins metallic complexes synthesis structural identification