不同铝源合成的 β 沸石结构表征与热分解行为的研究

谢在库*,1,2 陈庆龄² 张成芳¹ 朱支蔷² 朱 明² (华东理工大学化工工艺研究所,上海 200237) (上海石油化工研究院,上海 201208)

考察了以固体硅胶为硅源、NaAlO₂及 α -Al₂O₃·H₂O 两种铝源、以及不同晶化混合液的 SiO₂/Al₂O₃比 (15~50 对 β 沸石合成的影响。通过 XRD、DSC/TGA、²⁹Si NMR 及 ICP 研究表明,以 NaAlO₂ 为铝源合成的 β 沸石更易形成 Si(OAl)、Si(1Al)、Si(O⁻)配位,且化学 SiO₂/Al₂O₃比与晶化混合液 SiO₂/Al₂O₃比基本一致,以 α -Al₂O₃·H₂O 为铝源合成的 β 沸石更易形成 Si(OAl)、Si(O⁻)、Si(2Al)配位,且化学 SiO₂/Al₂O₃比低于晶化混 合液的 SiO₂/Al₂O₃比,TGA 失重量随 β 沸石 SiO₂/Al₂O₃比增加而增加,DSC 吸热量随 β 沸石 SiO₂/Al₂O₃增加 而减少。

关键词:	β沸石	铝源	硅铝比	表征
分类号:	0614.3+1	0613	. 72	

具有十二元环的三维高硅大孔 β 沸石是 1967 年由 wadlinger^[1]首先合成的,其结构模型于 1988 年由 Newsam 等^[2]确定。近十年来,许多文献报道了不同模板剂、不同硅源、不同碱金属以 及杂原子对 β 沸石合成的影响^[3-7]。关于 β 沸石合成过程中不同铝源及 SiO₂/Al₂O₃ 比对结构 的影响报道较少,以拟薄水铝石为铝源合成 β 沸石未见报道。

β 沸石是一种固体酸催化剂 ,SiO₂/Al₂O₃ 比及结构对催化性能有显著影响^[8] ,因此 ,对不同铝源及和不同 SiO₂/Al₂O₃ 比合成的 β 沸石进行结构及脱铵行为研究是十分必要的。

1 实验部分

1.1 Naβ沸石的制备

在 200mL 晶化釜中,以固体硅胶为硅源,分别以铝酸钠 (NaAlO₂)和拟薄水铝石 (α -Al₂O₃·H₂O)为铝源,四乙基氢氧化铵 (TEAOH)为模板剂,150~160℃下,水热静态晶化 60h 合成 Na β 沸石。晶化混合液的摩尔配比:(TEA)₂O/SiO₂ 为 0.055, H₂O/SiO₂ 为 2.70,其它合成条件及结 果见表 1。

1.2 Naβ沸石的表征

以日本理学 D-max/1400XRD 衍射仪, Cu Kα 辐射,进行物相表征; TGA 使用美国 UniversalV1.10B TA 仪 60mL · min⁻¹ 空气流下升温速率 20℃ · min⁻¹; 采用美国 PS-6 真空型电感耦 合等离子发射光谱 (ICP)进行 Al、Si、Na 元素分析,计算化学 SiO₂/Al₂O₃比;以 Bruker 公司的 AMX-400 进行 ²⁹Si NMR 表征,测定各种结构硅及化学环境。

* 通讯联系人。

收稿日期:1999-09-14。收修改稿日期:1999-12-01。

第一作者 谢在库 ,男 ,36岁 ,博士生 ,高级工程师 ,研究方向 ,沸石化学及催化反应工程研究。

表 1 Naβ沸石的合成条件及结果

Table 1 Synthetic Conditions and Results of Different Beta Zeolite Samples

sample	compositi	composition of gel^b		As-synthesized beta		composition of $\mathrm{gel}^{\mathrm{b}}$		As-synthesized beta	
	Na_2O/SiO_2	${\rm SiO_2/Al_2O_3}$	${\rm SiO_2/Al_2O_3^a}$	Na%	No.	Na_2O/SiO_2	${\rm SiO_2/Al_2O_3}$	${\rm SiO_2/Al_2O_3^a}$	Na%
\mathbf{A}_1	0.153	15	14.9	1.86	B_1	0.102	15	12.6	2.64
A_2	0.116	20	19.7	0.96	\mathbf{B}_2	0.102	20	16.0	1.76
A_3	0.087	27.3	27.1	0.62	\mathbf{B}_3	0.102	27.3	18.6	1.36
A_4	0.063	40	39.8	0.56	B_4	0.102	40	24.6	0.94
A_5	0.051	50	49.7	0.51	B_5	0.102	50	29.4	0.65

a: obtained by chemical analysis; b: alkyllinity of A and B gel is 0. 125 and 0. 312, respectively; Aluminium sources of sample A and sample B are NaAlO₂ and α -Al₂O₃ · H₂O respectively.

2 结果与讨论

2.1 Na β 沸石的化学 SiO₂/Al₂O₃ 比与晶化混合液 SiO₂/Al₂O₃ 比的关系

图 1 为 Na β 沸石的化学 SiO₂/Al₂O₃ 比与 晶化混合液 SiO₂/Al₂O₃ 比的关系。从表 1、图 1 可见,A及B系列样品的 SiO₂/Al₂O₃ 比与相应 的晶化混合液的 SiO₂/Al₂O₃ 比呈良好的线性 关系。Lechert 等^[9] 在研究丝光沸石的 SiO₂/ Al₂O₃ 比时也曾得到类似的关系。A 系列样品的 SiO₂/Al₂O₃ 比与晶化混合液的 SiO₂/Al₂O₃ 比基 本一致;B系列样品的 SiO₂/Al₂O₃ 比小于晶化 混合液的 SiO₂/Al₂O₃ 比,且随晶化混合液 SiO₂/Al₂O₃ 比的增大, β 沸石的 SiO₂/Al₂O₃ 比 相应增加幅度减小,这是由于采用 α -Al₂O₃· H₂O 为铝源时,在合成条件下,有些 Si 不易参 与晶化形成 β 沸石,所以产品 SiO₂/Al₂O₃ 比投 料时低很多。

此外,随 β 沸石 SiO₂/Al₂O₃ 比的增加, β 沸石中的 Na⁺含量逐渐减少,这和 β 沸石中的 Al 含量减小,补偿带负电荷的铝氧四体的 Na⁺量也相应减少是一致的。

2.2 $Na\beta$ 沸石结晶度的变化

不同铝源及不同 SiO₂/Al₂O₃ 比晶化混合液合成的 β 沸石的 XRD 谱和结晶度变化分别于 图 2 和图 3。

从图 2 及图 3 可见,以 NaAlO₂ 为铝源时, β 沸石结晶度随硅铝比增大而增大,直至 SiO₂/Al₂O₃ 比为 40 时,结晶度达最大值,当 SiO₂/Al₂O₃ 比为 50 时结晶度略有下降,且 XRD 的 2 θ 角 为 20.75°处及最强峰附近 22.95°处各存在一个弱峰,略有杂晶出现;以 α -Al₂O₃·H₂O 为铝源 时,硅铝比对合成的 β 沸石的影响与以 NaAlO₂ 为铝源时相比,基本相似,但相对结晶度较低。 当晶化混合物 SiO₂/Al₂O₃ 为 27.3 时,结晶度最大,晶化混合物的 SiO₂/Al₂O₃ 比为 15 时,合成 β 沸石因含有方英石物相,相对结晶度仅 46%。可见,两种不同铝源合成的 Na β 沸石在结晶度 方面的差异为: NaAlO₂ 和 α -Al₂O₃·H₂O 相比,前者合成的 Na β 沸石结晶度高于后者,且在 SiO₂/Al₂O₃ 比为 40 时,达最大值,而后者在 SiO₂/Al₂O₃ 比为 27.3 时达最大值。

图 2 合成 β 沸石的 XRD 谱

Fig. 2 XRD spectra of as-synthesized beta zeolite with different SiO₂/Al₂O₃ ratio in gel

2.3 Naβ沸石中 Si 的化学结构表征

A 及 B 系列样品的 ²⁹Si NMR 谱如图 4 所 示。经过高斯分布拟合并结合图 4 可知,合成的 沸石样品存在以下几种不同化学结构硅,化学位 移 – 100 左右为 Si(2Al)位,–104 左右为 Si(0H) 或 Si(O⁻)位,–107 左右为 Si(1Al)位,–111 及 – 115 为 Si(0Al)位,与文献报道基本一致^[10,11]。 此外,相对结晶度较低的 A₁ 及含杂晶的 B₁ 样品 是否与富铝 Y 沸石^[12]一样还存在–93 左右的 Si(3Al)位,尚待进一步探讨。

从图 4A 可见,对于 A 系列样品,随着 SiO₂/ Al₂O₃比的增大,化学位移为 – 115 处的肩峰变得 不明显, – 107 处的 Si(1Al)的峰强度逐渐减小,

Fig. 3 Change of relative crystallinity for as. synthesized beta zeolite with different SiO₂/Al₂O₃ ratio in gel

除 A1 样品外, – 100 处的 Si(2Al)峰强度没有明显变化。从图 4B 可见, B 系列样品与 A 系列样 品相比, 无明显的差异。 然而, 经计算后发现, 以 A4 及 B4 为例, 各种硅配位峰面积按百分比计

图 4 样品 A 及 B 的 ²⁹Si NMR 谱 Fig. 4 ²⁹Si NMR spectra of the series of A and B samples

S_{Si(0A1}): S_{Si(1A1}): S_{Si(0}··; S_{Si(2A1}) 分别约为 59: 14: 19: 8 和 57: 8: 17: 18,可见, NaAlO₂ 与 α-Al₂O₃ · H₂O 相比,合成的β沸石,除均易形成Si(0Al)和Si(0⁻)配位外,前者更易形成Si(1Al)配位,后

2.4 Naβ沸石 TGA/DSC 表征及模板剂脱除行为研究

表 2 为空气气流下 A 及 B 系列样品的 TGA/DSC 数据,图 5 为 A 及 B 系列样品中典型的 A₄ 及 B₄ 的 TGA 谱。图 6 为 B 系列样品的 DSC 谱。从图 5 可见 :A 及 B 样品均存在四个明显的 失重区。 I区 :25 ~ 200℃ ; II区 :A₄ ,200 ~ 420℃ ,B₄ ,200 ~ 410℃ ; III区 :A₄ ,420 ~ 475℃ ,B₄ , 410 ~ 460℃ ;IV区 :A₄ ,475℃ ~ 650℃ ;B₄ ,460 ~ 650℃。除在第 II失重区范围内 ,B₄ 样品的 DSC 谱在 200 ~ 300℃存在一个微小吸热峰 ,而在相应的 TGA 谱不太明显外 ,其它失重区与 β 沸石 DSC 谱基本一致。

at air. heating rate: 20°C · min⁻¹

beta samples at air

Perez-Pariente^[5] 认为,在空气气流下的 *β* 沸石 DSC 谱存在四个峰,按从低温到高温顺序, 第一个峰为吸热峰,第二到第四峰为放热峰,分别对应于吸附水脱附,TEAOH 分解、TEA⁺热 解,以及包芷的有机物的氧化分解。Su^[13]曾报道氦气气流下的 *β* 沸石 DSC 谱,认为仅存在三个 吸热峰,按从低温到高温顺序,分别对应于吸附水脱附、TEAOH 分解和 TEA⁺热解。 Bourgeat-Lami^[14]在空气气流下,件温速率为 10[°]C · min⁻¹,流量 50mL · min⁻¹),进行了 *β* 沸石 脱胺研究,认为除第一峰为水脱附峰吸热外,其它峰均为放热峰,但在氩气流下,均出现吸热 峰,据此提出了 *β* 沸石脱铵为 Hofmann 降解反应。在我们的实验中,当空气流量为 60mL · min⁻¹,升温速率为 20[°]C · min⁻¹ 时,合成的 *β* 沸石样品出现 3 ~ 4 个不等的吸热峰 (图 6),而当 空气流量不变,升温速率降为 3[°]C · min⁻¹ 时,出现了一个吸热峰和三个放热峰 (图 6B₄ 实线及 B₄ 虚线图),可见引起差异的根本原因是由于升温速率不同所致。根据我们的实验现象,*β* 沸 石可能的脱胺过程如下:

$$(\text{TEA}) - H (H_2O)_{\gamma} \frac{1}{Y \cdot H_2O} (\text{TEA}) - H \frac{2}{-C_2H_4} (CH_3CH_2)_{3}NH \cdot X \frac{3}{-C_2H_4} (CH_3CH_2)_{2}NH_2 \cdot X$$

$$\underbrace{4}_{-C_2H_4} (CH_3CH_2)_{NH_3} \cdot X \frac{5}{-C_2H_4} CH_2 = CH_2 + NH_3 + H \cdot X$$

者更易形成 Si(2Al)位。

第4期

式中 X 为 Si-O-或 (Al-O-Si)-或 OH-

由于升温速率太快,空气中氧含量相对较少,难以使 TEA 充分氧化导致 Hofmann 降解反 应占主导因素,DSC 谱表现为吸热峰,从DSC 谱向放热方向飘移可知,氧化反应伴随着 Hofmann 降解反应发生。从上述脱胺过程可以知道,DSC 谱上将存在 3~4 个吸热峰,第一吸热峰 为水脱附 6过程 1),由于反应级数不同及反应速率的差异,过程 2 到过程 4 为 Hofmann 低级降 解反应,过程 5 为 Hofmann 高级降解反应,过程 2 到过程 4 在高升温速率下由于受模板剂量及 结合力强弱的影响,可能表现 1 到 2 个吸热峰。此外,从表 2 可以看出,TGA 测定的 A 及 B 系 列样品模板剂量随 Na β 沸石 SiO₂/Al₂O₃ 比的升高而略有增加,但 A 及 B 系列样品的 DSC 测 定的总吸热量随 β 沸石 SiO₂/Al₂O₃ 比的升高而下降,可见,Hofmann 反应总吸热量不仅与 Na β 沸石的模板剂量有关,而且与不同 SiO₂/Al₂O₃ 比 Na β 沸石的 TEA⁺和 TEAOH 的结合力有关, 说明随 Na β 沸石 SiO₂/Al₂O₃ 比增大,TEA⁺和 TEAOH 与 Na β 沸石的结合力越弱。

参考文献

- [1] Wadlinger R. L., Kerr G. T., Rosinski E. J. U. S. Pat. 3308069, 1967.
- [2] Newsam J. M., Treacy M. M. J, Koetsier W. T. et al Proc. R. Soc. Lond., 1988, A420, 375.
- [3] Mostowicz R., Testa F., Fonseca A. et al Zeolites, 1997, 18, 308.
- [4] Eapen M. J., Reddy K. S. N., Shiralkar V. P. Zeolites, 1994, 14, 295.
- [5] Perez-Pariente J., Martens J. A., Jacobs P. A. Appl. Catal., 1987, 31, 35.
- [6] Perez-Pariente J., Jacobs P. A. Zeolites, 1988, 8, 46.
- [7] Vaudry F., Di Renzo F., Fajula F. et al Stud. Surf. Sci. Catal., 1994, 84, 163.
- [8] Camblor M. A., Corma A., Iborra S. et al J. Catal., 1997, 172, 76.
- [9] Lechert H., Lindner T., Staelin P. Stud. Surf. Sci. Catal., 1997, 105, 125.
- [10] Perez-Pariente J., Sanz J., Forens V. et al J. Catal., 1990, 124, 217.
- [11] Takewaki T., Beck L. W., Davis M. E. J. Phys. Chem., B1999, 103, 2674.
- [12]Klinowski J. Stud. Surf. Sci. Catal., 1989, 52, 39.
- [13]Su B. L., Norberg V. Zeolites, 1997, 19, 65.
- [14] Bourgeat-Lami E., Di Renzo F., Fajula F., Mutin P. H., Courieres T. D. J. Phys. Chem., 1992, 96, 3807.

Study on the Structure Characterized and the Process of Thermal Decomposition of Beta Zeolite Synthesized by two Kind of Aluminum Sources

XIE Zai-Ku^{1,2} CHEN Qing-Ling² ZHANG Cheng-Fang¹ ZHU Zhi-Qiang² ZHU Ming² (¹Institute of Chemical Technology, East China Univ. of Sci. and Tech., shanghai 200237) (²Shanghai Research Institute of Petrochemical Technology, Shanghai 201208)

The influence of SiO₂/Al₂O₃ ratio ranging from 15 to 50 and influence of α -Al₂O₃ · H₂O and NaAlO₂ as aluminium sources on the synthesis of beta zeolite have been systematically studied by using XRD, ²⁹Si NMR and ICP. NaAlO₂ as aluminium source in beta zeolite synthesis, Si tends to form Si (0Al), Si(1Al) and Si(O⁻) sites, and the SiO₂/Al₂O₃ ratios in beta zeolite and in gel are found to be consistent. α -Al₂O₃ · H₂O as aluminium source in beta zeolite synthesis, Si tends to form Si(0Al), Si(O⁻) and Si(2Al) sites, and the SiO₂/Al₂O₃ ratio in beta zeolite is lower than that of in gel. In addition, the process of thermal decomposition of TEA in beta-zeolite was discussed using DSC and TGA. Under air flow with high heating rate (20°C · min⁻¹), Hofmann degradation reaction mechanism was observed and there are 3 ~ 4 endotherm peaks on DSC spectra. TGA weight loss and DSC endotherm are related to the SiO₂/Al₂O₃ ratio in synthesized Beta zeolite.

Keywords:	β -zeolite	aluminum source	SiO ₂ /Al ₂ O ₃	characterization
-----------	------------------	-----------------	--	------------------