酸度及溶剂极性对两亲配体紫外 - 可见光谱的影响

欧阳健明* 林伟汉 郭志坚 林潮平 蒋朝阳。

暨南大学生命科学技术学院化学系,广州 510632)

(*南京大学配位化学国家重点实验室,南京 210093)

研究了溶剂的极性和溶液的酸度对两亲配体 N- 十六烷基 -8- 羟基 -2- 喹啉甲酰胺(HL)紫外 - 可见光谱 的影响。在碱性介质中,HL 的吸收带 'B_b、'L_a和 'L_b 均产生红移,在酸性介质中,HL 的吸收带不仅红移,而且 'L_b 带分裂为两个吸收峰。HL 存在明显的浓度效应。非极性和弱极性溶剂对 HL 的紫外可见光谱的影响服从 Baylies 方程,极性溶剂对 HL 的紫外可见光谱的影响服从 MeRac 方程。

关键词:	吸收光谱	两亲配体	溶剂极性	酸度
分类号:	0631	0641.242		

8- 羟基喹啉的金属螯合物由于具有较强的荧光效率而被用作电致发光 ④L)器件的发光 材料^[1,2],由此得到的电致发光具有可与集成电路相匹配,直流电压低,发光亮度高,以及它与 无机薄膜相比,校易实现大面积显色和多色显示等优点^[3,4]。采用具有两亲性质的 8- 羟基喹啉 金属配合物衍生物直接在 ITO 导电玻璃表面形成 LB 膜作为发光层制备电致发光器件,可以 使发光层的组成、厚度精确可控,制备条件温和,给发光层的制备开辟了一条新途径。基于此, 我们合成了一系列 8- 羟基喹啉的两亲配体 :N- 烷基 -8- 羟基 -2- 喹啉甲酰胺。前文^[5-8]曾研究 了这些两亲配体及其配合物的成膜性能和 LB 膜结构,并以配合物的 LB 膜为发光材料成功地 制备了单层电致发光器件^[9,10]。本文对两亲配体 N- 十六烷基 -8- 羟基 -2- 喹啉甲酰胺(HL)的 紫外 - 可见光谱进行了系统的研究。

1 实验部分

两亲配体 N- 十六烷基 -8- 羟基 -2- 喹啉 甲酰胺(HL)为自己合成^[9],其结构见图 1。使 用前用甲醇 - 水混合溶剂重结晶 ;其他溶剂为 分析纯 经常规干燥后蒸镏。紫外可见光谱用 日本岛津公司的 UV-3100 型 UV-VIS-NIR 紫 外可见分光光度计测定。

Fig. 1 Molecular structure of ligand HL

2 结果与讨论

2.1 吸收带的指定

HL 最重要的特征是在约 210、255、308 和 350nm 出现 4 个吸收峰 图 2),其中 210nm 为

收稿日期:1999-10-08。收修改稿日期:2000-01-10。

教育部重点科学技术项目 (1998-121) 广东自然科学基金(No. 980898)和南京大学配位化学所国家重点实验室资助项目。

* 通讯联系人。E-mail: toyjm@ jnu. edu. cn

第一作者 欧阳健明,男,36岁,博士,副教授;研究方向:膜模拟化学及功能材料。

2 位取代长链烷基胺基甲酰基 (CONHR) 的吸收 ($n \rightarrow \pi^*$),后三个为喹啉环的 $\pi \rightarrow \pi^*$ 电子跃 迁吸收,255nm 归属于喹啉环的 ¹B_b 吸收带,350和 308nm 分别归属于喹啉环的 ¹L_a和 ¹L_b 吸收 带^[11]。这些吸收带的波长与半经验估算值基本相符,根据半经验估算^[12]:出现在 225、270和 313nm 的三个喹啉 (甲醇中)吸收带 (即 ¹B_b、 ¹L_a和 ¹L_b带)在喹啉环上引入 OH 及 – CONH(CH₂)₁₅CH₃两个助色团后将分别红移约(7+27),(10+20)和(15+15)nm,可见,实验 值与估算值基本一致。

2.2 酸度对 HL 吸收带的影响

HL 是一个两性配体,分子中同时含有弱酸性基团 (酚羟基)和弱碱性基团 (叔胺氮原子),溶剂的酸度对两亲配体 HL 的吸收光谱产生很大的影响。表 1 列出了 HL 在中性二氧六环 - 水 (1:4)和含有不同酸度的二氧六环水溶液中的最大吸收波长。在中性的二氧六环水溶液 (1:4)中,HL 的 $^{1}B_{b}$ 、 $^{1}L_{b}$ 和 $^{1}L_{a}$ 带分别为 255、308和 350nm,但在 1×10⁻³mol·L⁻¹ NaOH 的二氧六环水溶液中, $^{1}B_{b}$ 、 $^{1}L_{b}$ 和 $^{1}L_{a}$ 带分别红移至 276、348和 415nm。NaOH 浓度在 2×10⁻⁴mol·L⁻¹至 1.0mol·L⁻¹之间时,HL 的吸收光谱没有明显的变化,表明在此 NaOH 浓度范围内,HL 存在相同吸收物种。在 HClO4 介质中,HL 的吸收带也产生红移,同时伴随着光谱形状的改变。当 HClO4 浓度由 1×10⁻⁵

图 2 HL 在不同酸度二氧六环 - 水溶液中的紫 外 - 可见光谱

Fig. 2 Spectra of HL in acidic (A), basic (B) and neutral (N) dioxane--water (1:4) solutions

⁵mol·L⁻¹ 增加到 0.5mol·L⁻¹ 时,HL 的 ¹B_b 和 ¹L_a 吸收带分别红移了约 15 和 38nm。虽然,在 碱性条件下 HL 吸收峰位置的改变随着 NaOH 浓度的增加出现一个突变(约在 NaOH 浓度为 $(1 \sim 2) \times 10^{-4}$ mol·L⁻¹),但是,在酸性条件下,HL 的 ¹B_b和 ¹L_a带随着介质浓度的增加而逐渐 变化,这种变化不仅表现在其 λ_{max} 逐渐红移,而且吸收峰的形状和强度也慢慢改变(见表 1 中 的 lg ε)。在 HClO₄ 浓度为 0.001 至 0.5mol·L⁻¹范围内时,HL 的 ¹B_b带分裂为二个峰(见图 2),分别出现在约 321 和 332nm 处,且随着 HClO₄ 的浓度的增加,两峰逐渐分开,这种分裂现 象似乎是 8- 羟基喹啉衍生物的吸收光谱在酸性介质中的一个通性¹¹³。

从以上讨论可以看出,随着二氧六环水溶液 pH 值的增加(从 pH1 到 pH13),HL 的三个吸 收峰的最大吸收波长 λ_{max} 均从较长的波长移向较短的波长,然后又移向较长的波长。当介质中 NaOH 浓度大于 1.5 mol·L⁻¹或 HClO₄ 浓度大于 1.0 mol·L⁻¹时,HL 开始被酸或碱所分解, 即 HL 的 2- 位酰胺键断裂,此时,溶液的吸收带为由 8- 羟基喹哪啶酸、正十六胺和 HL 的吸收 峰的组合。

2.3 HL 的浓度效应

研究了不同浓度 HL/乙醇溶液的吸收光谱,HL 的三个 $\pi \to \pi^*$ 跃迁吸收峰均随 HL 浓度 的降低而出现红移(表 2) 表明 HL 化合物具有明显的浓度效应。从表 2 可见 HL 稀释 20 倍, 虽然 'B_b 红移不明显 ,但 'L_a 和 'L_b 分别均红移了 6nm。'L_a 和 'L_b 吸收带的 λ_{max} 随待测溶液浓度 的增加出现红移的原因很可能与 HL 基态的偶极矩在稀、浓溶液中的变化有关。由于 HL 为极

─ 衣 1 一个问 敞 度 ト HL 的 系 外 - 可 児 元 1

Table 1 Summary of Absorption Data for 0.1 mmol \cdot L⁻¹ Solution of HL with Various Acidity

$^{1}B_{b}/nm$		${}^{1}L_{b}$		nm		$^{1}L_{a}/nm$	
$\lambda_{ ext{max}}$	$\log \varepsilon$	$\lambda_{ ext{max}}$	$\log \varepsilon$	$\lambda_{ ext{max}}$	$\log \varepsilon$	$\lambda_{ ext{max}}$	$\log \varepsilon$
277	4.32	349	3.40			416	3.36
277	4.36	349	3.41			416	3.33
276	4.40	348	3.39			416	3.22
276	4.36	348	3.40			415	3.20
276	4.44	348	3.35			415	3.25
255	4.44	308	3.60			358	3.36
255	4.43	308	3.65			350	3.39
256	4.40	308	3.33			353	3.01
257	4.43	308	3.40			360	3.15
258	4.37	320	3.32	331	3.48	369	3.20
260	4.37	321	3.35	331	3.50	382	3.20
261	4.34	321	3.41	331	3.52	391	3.21
264	4.37	321	3.56	332	3.61	391	3.36
271	4.44	321	3.62	334	3.62	391	3.40
	$^{1}B_{b}$ λ_{max} 277 276 276 276 276 255 255 255 256 257 258 260 261 264 271	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c } $^{1}B_{b}/nm $^{1}L_{b}$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$			

* dioxane-H₂O (1:4) solution

表 2 不同浓度 HL 的紫外 - 可见光谱

Table 2 Absorption Maximum for HL in Ethanol at Different Concentration

conc. $/ (mol \cdot L^{-1})$	$^{1}\mathrm{L}_{a}/\mathrm{nm}$	$^{1}L_{b}/nm$	$^{1}\mathrm{B_{b}}/\mathrm{nm}$	nm
1.0×10^{-3}	345	305	230 ~ 270	
5. 0×10^{-4}	346	306	$232\sim 270$	
2. 5×10^{-4}	347	307	$240\sim 260$	211
1.0×10^{-4}	348	308	229 ~ 258	210
7. 0×10^{-5}	349	310	254	209
5. 0×10^{-5}	351	311	254	208

性溶质,溶剂乙醇为极性较大的溶剂,溶质和溶剂之间的主要作用力是偶极-偶极相互作用,因而溶剂的极性大小,溶剂量的多少都将会影响溶质基态偶极矩(μ_{s})^[14,15]。研究溶液的浓度效应主要讨论的就是溶质周围极性溶剂量的多少对 μ_{s} 的影响。当待测溶液是较浓的溶液时,溶质周围的溶剂分子比例将会减少,则诱导的溶质基态偶极矩变小,即 μ_{s} (浓溶液)< μ_{e} (稀溶液),这自然会影响到 HL 基态和激发态的占优势结构,会使 μ_{e} < μ_{s} 。即:

 $D + A = [D....A \leftrightarrow D^+...A^-] = [D...A \leftrightarrow D^+...A^-]$

(基态和激发态占优势的中介结构下面有横线)

当 HL 的浓度从浓变稀时,由于极性溶剂乙醇对溶质 HL π-π*跃迁的激发态间的分散力 大于对基态的分散力,因而使 HL 激发态的能级降低得更多,导致在发生 π-π*跃迁时,基态和 激发态的能差变小(图 3a),所以谱带发生红移。

 $^{1}B_{b}$ 带与 $^{1}L_{a}$ 、 $^{1}L_{b}$ 的情况有所不同。当 HL 浓度为 1×10^{-3} mol·L⁻¹时,HL 的 $^{1}B_{b}$ 带为一组 由多个吸收峰组成的细微结构 (230~270nm),出现这种细微结构即振动吸收峰的原因是因为 化合物 HL 的分子刚性与张力均较大,当 HL 浓度较大时,阻碍了激发态能量分散于各能级,因 而仍保持其振动细微结构亚带所致。随着 HL 的浓度降低,溶剂与 HL 的相互作用增大,振动细 微结构慢慢减弱,直至消失。当 HL 的浓度降至 7×10^{-5} mol·L⁻¹ 时,HL 的 ¹B_b 带只出现一个 单峰。

210nm 处的吸收峰不象 $π-π^*$ 跃迁吸收带那样随着待测溶液浓度的减小出现红移,而是 与此相反 ,紫移了约 3nm ,表明此峰为喹啉环上 2 位长链酰胺的 $n \to \pi^*$ 跃迁所致。因为 C = 0在基态时是有极性的 (C⁺ – O⁻),但当 n 电子 (即氧原子上的电子)受激发跃迁至 $π^*$ 轨道后, 受激发态的 C = 0 基因为氧原子一侧的电子云减少而极性降低(见图 3b),因此,基态羰基更容 易与极性溶剂产生较强的作用。随着 HL 浓度的减小,HL 周围的极性溶剂比例增加,相当于相 同浓度溶质时溶剂的极性增加,极性溶剂的偶极作用,使得 C = 0 的基态能量下降较大,而激 发态能量下降较小¹¹⁶¹,二者的能量差增加(由 ΔE_n 增加到 $\Delta E_n'$),因而由 $n \to \pi^*$ 跃迁引起的吸 收带发生蓝移。

图 3 极性溶剂中极性溶质浓度的大小对 $\pi \rightarrow \pi^*$ 和 $n \rightarrow \pi^*$ 跃迁能级差的影响

Fig. 3 Effect of solute concentration on the transition of $\pi \rightarrow \pi^*$ and $n \rightarrow \pi^*$

(a) $\pi \rightarrow \pi^*$ transition of quinoline ring (C = C)

(b) $n \rightarrow \pi^*$ transition of amide (C = O)

2.4 溶剂对 HL 紫外可见光谱的影响

研究了 22 种常见溶剂对 HL 吸收光谱的影响。各溶剂的折射率(n)、介电常数 (ε) 及 HL 在 其中的最大吸收峰列于表 3。不同溶剂,对 HL 吸收峰产生不同的位移。在非极性溶剂及弱极性 溶剂中,极性的 HL 与溶剂间的主要作用是偶极 - 诱导偶极作用,因而影响溶质吸收光谱的主 要靠溶剂的分散力,即溶剂的极化度,这可以通过溶剂的折射率(n)来测量。N. S. Bayliss^[17]建 立了最大吸收峰频率与溶剂折射率(n)之间的函数关系:

$$\Delta v = v_0 - v_i = F(n) = K(n^2 - 1) / (2n^2 - 1)$$
(1)

$$v_i = v_0 - K(n^2 - 1) / (2n^2 - 1)$$
(2)

式中 v, v_i, v₀为频率, K为常数, n为溶剂的折射率。

以表 3 中前 8 种溶剂的 F(n) 函数对 HL 的最大吸收峰 (${}^{1}L_{a}$ 和 ${}^{1}B_{b}$ 带) 的波数作图,结果见 图 4。可见,在弱极性和非极性溶剂中,F(n)与 v_{i} 之间有较好的直线关系。从图 4 中得出的 HL 的 ${}^{1}L_{a}$ 和 ${}^{1}B_{b}$ 带 v_{max} 与 F(n)的关系式为:

$$\nu_{\max}(^{1}L_{a}) = 28430 - 1700(n^{2} - 1) / (2n^{2} - 1)$$
(3)

$$_{\max}({}^{1}B_{b}) = 38150 - 5000(n^{2} - 1) / (2n^{2} - 1)$$
(4)

但是,在极性溶剂中,Bayliss方程引起较大的偏差。因为在极性溶剂中溶剂的分散力不再是主

要的作用力,HL 与极性溶剂间的主要作用是偶极 - 偶极作用。此时,可用简化的 McRae 方程183来描述 HL 吸收峰的移动。定义:

表 3 溶剂对 HL 紫外 - 可见光谱的影响

Table 3 Solvent Shifts of Absorption Maximum of HL

solvent	n^{a}	$F(n)^{b}$	${\cal E}^{a}$	$F(n, \varepsilon)^{\circ}$	${}^{1}\mathrm{B}_{\mathrm{b}}$	$^{1}L_{b}$	$^{1}L_{a}$
1 <i>n</i> -pentane	1.36	0.180	1.80		254	308	346
2 <i>n</i> -Hexane	1.375	0.186	1.90		254	308	346
3 <i>n</i> -octaane	1.395	0.193	2.00		254.5	307.5	346.5
4 cyclehexane	1.426	0.204	2.00		254.5	308	346.5
5 CCl ₄	1.457	0.214	2.20		255	308	346.5
6 methylbenz.	1.497	0.226	2.40			308	347
7 benzene	1.501	0.228	2.30			308	347
8 xylene(mix)	1.521	0.233	2.00			306	347
9 dioxane	1.422	0.203	2.21	0.033	257	308	353
10 propinic acid	1.390	0.192	3.10	0.175	256.5	308	353
11 C ₆ H ₅ OCH ₃	1.517	0.232	4.33	0.224		308	351
12 CHCl ₃	1.443	0.209	4.81	0.294	256.5	308	349
13 Cl ₃ CCH ₃	1.438	0.208	5.24	0.323		308	349
14 tetrahydrofuran	1.401	0.198	7.58	0.440	255.5	308	350.5
$15 \ \mathrm{CH_2Cl_2}$	1.424	0.203	8.93	0.470	255	308	348
16 <i>n</i> -pentanol	1.410	0.199	15.0	0.576	255	308	350
17 n-buthanol	1.399	0.195	17.5	0.604	254.5	308	349
18 isopropanol	1.377	0.186	19.9	0.633	255	308	349
19 n-propanol	1.386	0.190	20.3	0.631	255	308	348.5
20 ethanol	1.361	0.181	24.6	0.666	254	308	348
21 methanol	1.328	0.169	32.7	0.710	254	308	347
22 acetonitrile	1.432	0.175	37.5	0.665	254	308	349

a: ε and *n* values come from reference^[18] b: $F(n) = (n^2 - 1)/(2n^2 + 1)$ c: $F(n, \varepsilon) = (\varepsilon - 1)/(\varepsilon + 2) - (n^2 - 1)/(n^2 + 2)$

Fig. 4 Dependence between refractive indices of solvents and frequencies of absorption bands maxima of HL

$$F(n, \varepsilon) = B[(\varepsilon - 1)/(\varepsilon + 2) - (n^2 - 1)/(n^2 + 2)]$$
(5)

式中 ɛ、n 分别为溶剂的介电常数和折射率 ,B 为常数。

以溶剂的 $F(n, \varepsilon)$ 函数对 HL 的吸收带(${}^{1}L_{a}$ 和 ${}^{1}B_{b}$)带的频率作图(图 5),可以求得图中直线存在如下线性关系:

$$\nu_{\max}({}^{1}L_{a}) = 38320 + 1200[(\varepsilon - 1)/(\varepsilon + 2) - (n^{2} - 1)/(n^{2} + 2)]$$
(6)

$$v_{\max}({}^{1}B_{b}) = 28240 + 1800[(\varepsilon - 1)/(\varepsilon + 2) - (n^{2} - 1)/(n^{2} + 2)]$$
(7)

即随着溶剂 $F(n, \varepsilon)$ 函数的增加 ,HL 的最大吸收峰(${}^{1}L_{a}$ 和 ${}^{1}B_{b}$ 带)向增加波数的方向移动。

图 5 溶剂 $F(n, \varepsilon)$ 函数对 HL 吸收光谱频率的影响

Fig. 5 Dependence between $F(n, \varepsilon)$ function of solvents and frequencies of absorption bands maxima of HL

参考文献

- [1] Chen C. H., Shi J. Coord. Chem. Rev., 1998, 171, 161.
- [2] Tang C. W., Vanslyke S. A., Chen C. H. Appl. Phys. Lett., 1987, 51, 913.
- [3] OUYANG Jian-Ming(欧阳健明), ZHENG Wen-Jie(郑文杰), TAI Zhi-Hou(邰子厚), TANG Wen-Xia(唐雯霞) et al Huaxue Xuebao(Acta Chimica Sinica), 1999, 57(4), 333.
- [4] Burn P. L., Holmes B. et al Nature, 1992, 356, 47.
- [5] Ouyang J. M., Li L., Tai Z. H., Lu Z. H., Wang G. M. Chem. Commun., 1997, 815.
- [6] Ouyang J. M., Zheng W. J., Huang N. X. et al Thin Solid Films, 1999, 340(1~2), 257.
- [7] OUYANG Jian-Ming(欧阳健明), LI Ling(李 玲), TAI Zhi-Hou(邰子厚) et al Wuji Huaxue Xuebao(Chinese J. Inorg. Chem.), 1997, 13(3), 315.
- [8] LI Ling(李 玲), TAI Zhi-Hou(邰子厚), OUYANG Jian-Ming(欧阳健明) et al Wuji Huaxue Xuebao(Chinese J. Inorg. Chem.), 1997, 13(3), 311.
- [9] Ouyang J. M., Zhang Z. M., Ling W. H. et al Appl. Surf. Sci., 1999, 151(1~2), 67.
- [10] Ouyang J. M., Liu H. Y. Mol. Cryst. Liq. Cryst., 1999, 337, 125.
- [11] Perkampus H. H., Kortum K. Z. Analyst. Chem., 1962, 190, 111.

· 578 ·

- [12] Jaffe H. H., Orchin M. Theory and Applications of Ultraviolet Spectroscopic, John Wiley and Sons Inc.: New York, 1962.
- [13] Popovych O., Rogers L. B. J. Am. Chem. Soc., 1959, 81, 4469.
- [14] LI Song-Lan(李松兰), YANG Xue-Jin(杨学谨), YU Mei(于 梅) et al Gaodeng Xuexiao Huaxue Xuebao (Chem. J. Chin. Univ.), 1991, 12, 1609.
- [15] LI Song-Lan(李松兰), LIAO Dai-Zheng et al Gaodeng Xuexiao Huaxue Xuebao(Chem. J. Chin. Univ.),
 1994, 15, 532.
- [16]SHI Yao-Zeng(施耀曾), XUN Xiang-Zhen(孙祥祯) et al Spectroscopy and Chemical Identification of Organic Compounds(有机化合物光谱和化学鉴定), Nanjing: Jiangsu Sci. Tech. Press, **1988**.
- [17] Bayliss N. S. J. Chem. Phys., 1950, 18, 292.
- [18] Strat G., Strat M., Grecu I. Spectros. Lett., 1994, 27, 177.

Effect of Acidity and Polarity of Solvents on the UV-Visible Spectra of Amphiphilic Ligand

OUYANG Jian-Ming^{*} LING Wei-Han GUO Zhi-Jian LIN Chao-Ping JIANG Chao-Yang^a (Department of Chemistry, Jinan University, Guangzhou 510632) (^a State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093)

The UV-visible spectra of an amphiphilic derivative of 8-hydroxyquinoline, N-hexadecyl-8-hydroxy-2-quinoline carboxamides were investigated. The positions of ${}^{1}L_{a}$ and ${}^{1}B_{b}$ bands of the derivatives were investigated as a function of solvent. Apparent concentration effect and acid-base equilibrium in polar solvent were observed.

Keywords: UV-visible spectra amphiphilic ligand polarity of solvents acidity

第4期