混合价钼锗酸盐的合成、结构及性质研究

牛景扬 王敬平*

(河南大学化学化工学院,开封 475001)

周忠远

(中国科学院成都有机化学研究所,成都 610041)

合成了单电子还原混合价杂多化合物[C₁₀H₁₀N]₄HGeMo₁₂O₄₀,并由元素分析、IR、UV 进行了表征。单晶 X-射线分析表明,属单斜晶系,空间群 $P2_1/n$,晶胞参数 a = 1.4803(3), b = 1.2582(3), c = 1.7712(4) nm, $\beta = 98.31(3)^\circ$, V = 3.264(16) nm³。由 4296 个可观察衍射点进行全矩阵最小二乘法修正后,可靠性因子 R = 0.0646。变温 ESR 研究表明随温度降低单电子离域程度减小。

关键词:	混合价	杂多化合物	晶体结构
分类号:	0611.662		

Keggin 结构杂多阴离子可以接受一个或多个电子还原形成混合价配合物^[1]。这类混合价 配合物通常呈深蓝色, 故俗称 '杂多蓝 "。由于该类化合物与母体酸相比对热及酸碱环境具有更 强的稳定性^[2], 使其应用前景更加广阔。关于混合价杂多化合物的性质已有报道^[3-5], 但有关 其晶体结构方面的研究报道不多^[6-8]。本文报道了单电子还原钼锗酸盐的合成、表征及晶体结 构。

1 实验部分

1.1 试剂和仪器

所用试剂均为分析纯,未进行再处理。 $H_4GeMo_{12}O_{40} \cdot nH_2O$ 按文献^[9]方法合成, N- 甲基喹啉 由喹啉和碘甲烷在乙醇中反应制得。

Perkin-Elmer240C 元素分析仪, Nicolet 170SX FT-IR 红外光谱仪, 溴化钾压片, Shimadzu UV-240 紫外 - 可见分光光度计, 样品用 MgO 压片, Bruker ER200-D-SRC 顺磁共振仪, 在 X- 波段工作。CAH-2000 型磁化率仪。

1.2 化合物的制备

向 10mL 10mol·L⁻¹的 H₄GeMo₁₂O₄₀·nH₂O 水溶液中加入 1mL 300mol·L⁻¹的碘化 N-甲 基喹啉水溶液,得到灰绿色沉淀,抽干,用水洗涤数次,将沉淀溶于 DMF,用 DMF-水互扩散 法生长单晶,数天后析出黑绿色晶体。元素分析及磁化率测定表明晶体分子组成为 [C₁₀H₁₀N]₄HGeMo₁₂O₄₀。

1.3 晶体结构分析

取 0. 22 × 0. 20 × 0. 26mm³ 的单晶置于 Simens P4 X- 射线四圆衍射仪上,用 Mo Kα 射线以 收稿日期 2000-01-25。收修改稿日期: 2000-03-31。

国家自然科学基金资助项目 (No. 29601002),河南省自然科学基金和河南省教委科学基金资助项目。

* 通讯联系人。

第一作者:牛景扬,男,36岁,博士,副教授;研究方向:多酸化学与功能材料。

ω方式扫描。在 4. 0° ≤ 2 θ ≤ 55. 0°范围内共收集 5735 个独立衍射点, 用其中 $F > 6.0 \sigma(F)$ 的 4296 个可观察到的衍射点进行结构修正, 全部数据经经验吸收校正, 透过率最大为 1. 00, 最小为 0. 820, 结构由直接法解出, GeO₄ 四面体中的四个氧处于无序状态, 占有率为 0. 5。对非氢原 子进行各相异性热因子全矩阵最小二乘法修正, 氢原子未经修正, 最终差值 Fourier 图中残余 的最高电子密度峰为 2550e · nm⁻³, 最低为 – 4490e · nm⁻³, (Δ / σ)_{max} = 0. 94。过程中所有计算 均用 SHELXS86/SHELXL93 程序在 PC-586 计算机上进行。最后可靠性因子 R = 0.0646, S = 1. 83, Rw = 0.0759, $w^{-1} = \sigma^2(F) + 0.0005 F^{-2}$ 。Mr = 2441.65, $D_{cald} = 2.48g \cdot cm^{-3}$, $\mu = 2.777 mm^{-1}$, F(000) = 2404, Z = 2。

2 结果与讨论

2.1 化合物表征

标题化合物具有 Keggin 结构的四个特征振动吸收峰,即存在 γ_{as} Geo, γ_{as} Mo = O, γ_{as} M

表1 标题化合物及酸的红外光谱数据

 Table 1
 IR Data of the Title Compound and its Acid
 cm⁻¹

compound	$oldsymbol{\gamma}_{ m as}$ (Ge-O _a)	$\gamma_{\rm as}$ (Mo = O _d)	$\gamma_{ m as}$ (Mo-Ob)	$\gamma_{ m as}$ (Mo-O_c)
[C ₁₀ H ₁₀ N] ₄ H GeMo ₁₂ O ₄₀	808	948	878	773
H ₄ GeMo1 ₂ O ₄₀ · nH ₂ O	790	951	870	760

图 1 为钼锗酸与标题化合物的固体漫反射 电子光谱。标题化合物在 800nm 附近的吸收带 为 IVCT(Mo(V) \rightarrow Mo(V))跃迁,这是杂多阴离子 还原为杂多蓝的重要标志¹¹¹。低于 500nm 的吸 收带为 $O_{b,c} \rightarrow$ Mo 和 $O_{d} \rightarrow$ Mo 的跃迁吸收带,还 原后该吸收带发生蓝移。

常温下测得化合物的有效磁矩为 1.67 μ B, 由 $\mu_{eff} = \sqrt{n} (a+2)$ 可知, 化合物为单电子还 原。图 2 为化合物变温 ESR 谱图,化合物在室温 时谱线很宽,这是由于还原电子离域所致,随着 温度减低,谱线逐渐变窄,表明电子离域程度减 小。ESR 谱线随温度升高而变宽,表明由于电 子的热运动,电子在各个钼原子之间的离域程 度增大,这种现象证明其为典型的第 II类混合 价化合物^[3]。由于温度不够低,谱图上没有出现 超精细分裂谱线,从 110K 谱图上可求得 g = 1.943。

Fig. 1 Solid diffuse reflectance spectra a: $H_4GeMo_{12}O_{40} \cdot nH_2O$ b: the title compound

2.2 晶体结构描述

晶体的原子坐标及热参数列于表 2,选择的键长列于表 3,结构如图 3。

表 2 原子坐标和热参数

Table 2 Atomic Coordinates ($\times 10^4$) and U(eq) ($\times 10^5$, nm²)

atoms	x	У	z	U(eq)	atoms	x	у	z	$U(\mathrm{eq})$
Ge(1)	0	0	5000	36(1)	O(20)	1592(3)	1681(3)	2876(3)	88(1)
Mo(1)	1937(1)	1654(1)	5445(1)	58(1)	0(21)	2775(3)	2508(3)	5697(3)	72(1)
Mo(2)	2028(1)	-1052(1)	6031(1)	57(1)	0(22)	2474(3)	364(3)	5748(3)	110(1)
Mo(3)	699(1)	795(1)	6913(1)	47(1)	N(1)	3068(3)	4328(3)	3875(3)	99(1)
Mo(4)	-1499(1)	1516(1)	5953(1)	52(1)	C(1)	2335(3)	4303(3)	4135(3)	118(1)
Mo(5)	- 193(1)	2761(1)	4683(1)	58(1)	C(2)	2058(3)	4996(3)	4669(3)	105(1)
Mo(6)	1019(1)	1164(1)	3512(1)	48(1)	C(3)	2629(3)	5812(3)	4965(3)	131(1)
0(1)*	-907(3)	-301(3)	4291(3)	49(1)	C(4)	3440(3)	5862(3)	4674(3)	112(1)
0(2)*	599(3)	1098(3)	4686(3)	49(1)	C(5)	4083(3)	6621(3)	4976(3)	99(1)
0(3)*	788(3)	-1053(3)	5043(3)	49(1)	C(6)	4918(3)	6683(3)	4712(3)	200(1)
$0(4)^{*}$	-348(3)	217(3)	5816(3)	50(1)	C(7)	5059(3)	5968(3)	4154(3)	167(1)
0(5)	1407(3)	1594(3)	6423(3)	126(1)	C(8)	4501(3)	5159(3)	3868(3)	133(1)
0(6)	930(3)	2697(3)	5232(3)	113(1)	C(9)	3659(3)	5126(3)	4143(3)	94(1)
0(7)	1963(3)	1502(3)	4450(3)	114(1)	C(10)	3304(3)	3492(3)	3392(3)	135(1)
0(8)	3004(3)	-1481(3)	6463(3)	64(1)	N(2)	8799(3)	4979(3)	2908(3)	173(1)
0(9)	1554(3)	-424(3)	6760(3)	124(1)	C(11)	8459(3)	3998(3)	2765(3)	129(1)
0(10)	-2183(3)	1371(3)	5068(3)	134(1)	C(12)	8715(3)	3052(3)	2385(3)	99 (1)
0(11)	-1371(3)	2304(3)	4019(3)	64(1)	C(13)	9558(3)	2928(3)	2107(3)	205(1)
0(12)	1038(3)	1028(3)	7829(3)	79(1)	C(14)	10046(3)	3917(3)	2234(3)	93(1)
0(13)	-109(3)	-470(3)	7035(3)	88(1)	C(15)	10922(3)	4107(3)	2075(3)	155(1)
0(14)	-330(3)	1553(3)	6707(3)	91(1)	C(16)	11370(3)	5075(3)	2232(3)	178(1)
0(15)	-2104(3)	2272(3)	6448(3)	70(1)	C(17)	11037(3)	5905(3)	2624(3)	132(1)
0(16)	-784(3)	2629(3)	5474(3)	140(1)	C(18)	10145(3)	5752(3)	2783(3)	224(1)
O(17)	-1679(3)	201(3)	6341(3)	81(1)	C(19)	9737(3)	4774(3)	2623(3)	134(1)
O(18)	-319(3)	4108(3)	4432(3)	62(1)	C(20)	8546(3)	5598(3)	3249(3)	109(1)
O(19)	337(3)	2257(3)	3772(3)	167(1)					

 \star The atoms exist in the disordered distribution, and the occupation rate is 0.5

每个分子有四个有机阳离子和一个 Keggin 结构阴离子组成,从晶体结构上不能确定质子的位置。Keggin 结构阴离子中的氧原子可分为两大类: 一类为端基氧,仅与一个金属原子相连;另一类为桥氧,与一个以上的金属原子相连;桥氧又可分为 三种:(1)连接金属原子和中心杂原子的氧,记为 O_a;(2)连接两组八面体的桥氧,记为 O_b;(3)同一组 八面体内的桥氧,记为 O_c。表现在红外光谱上有 γ_{as} (Ge-O₂), γ_{as} (Mo-O₄)和 γ_{as} (Mo-O₄)和 γ_{as} (Mo-O₄)四个特征振动 吸收峰。由于该晶体中杂多阴离子的 GeO₄ 四面体 上的四个氧呈无序分布 (占有率为 0.5),导致阴离 子对称性升高,从结构图上不能区分杂多阴离子的 构型和桥氧类型。Ge 原子处于杂多阴离子的中心, Ge 和 O1, O2, O3 及 O4 (或 O1a, O2a, O3a 及 O4a) 构成中心四面体,最小的 O-Ge-O 键角 104.0(2)°,

Fig. 2 ESR spectra at different temperature a: 300K b: 240K c: 210K d: 180K e: 150K f: 110K

无机化 学 学 报

(°)

表 3 主要键长

Table 3 Selected Bond Lengths

Table 3 Selected Bond Lengths							Å
bond	distance	bond	distance	bond	distance	bond	distance
Ge(1)-O(1)	1.742(5)	Mo(3)-O(4)	2.415(5)	Mo(5)-O(18)	1.646(4)	C(4)-C(9)	1.391(7)
Ge(1)-O(2)	1.774(5)	$M_0(3)-O(5)$	1.768(5)	$M_0(5)-O(19)$	1.996(6)	C(5)-C(6)	1.385(7)
Ge(1)-O(3)	1.760(5)	Mo(3)-O(9)	2.031(5)	Mo(5)-O(3A)	2.399(5)	C(6)-C(7)	1.375(7)
Ge(1)-O(4)	1.627(6)	Mo(3)-O(12)	1.654(5)	Mo(6)-O(2)	2.257(6)	C(7)-C(8)	1.361(6)
$M_0(1) - O(2)$	2.335(5)	$M_0(3)-O(13)$	2.022(5)	$M_0(6) - O(7)$	2.056(5)	C(8)-C(9)	1.403(7)
$M_0(1)-O(5)$	2.004(6)	Mo(3)-O(14)	1.790(5)	$M_0(6)-O(19)$	1.806(5)	N(2)-C(11)	1.344(6)
Mo(1)-O(6)	1.981(5)	Mo(3)-O(1A)	2.285(6)	Mo(6)-O(20)	1.639(6)	N(2)-O(19)	1.565(7)
Mo(1)-O(7)	1.778(6)	Mo(4)-O(4)	2.399(5)	Mo(6)-O(4A)	2.401(5)	N(2)-O(20)	1.085(7)
Mo(1)-O(21)	1.652(5)	Mo(4)-O(10)	1.749(5)	Mo(6)-O(13A)	1.771(5)	C(11)-C(12)	1.445(7)
Mo(1)-O(22)	1.852(5)	Mo(4)-O(14)	2.028(5)	Mo(6)-O(17A)	1.974(4)	C(12)-C(13)	1.416(7)
Mo(1)-(1A)	2.377(5)	Mo(4)-O(15)	1.644(5)	N(1)-C(1)	1.240(8)	C(13)-C(14)	1.440(6)
Mo(2)-O(3)	2.346(5)	Mo(4)-O(16)	2.015(5)	N(1)-C(9)	1.370(6)	C(14)-C(15)	1.387(7)
$M_0(2) - O(8)$	1.626(5)	Mo(4)-O(17)	1.826(5)	N(1)-C(10)	1.240(7)	C(14)-C(19)	1.392(7)
Mo(2)-O(9)	1.745(6)	$M_{0}(4) - O(3A)$	2.258(6)	C(1)-C(2)	1.391(7)	C(15)-C(16)	1.396(6)
Mo(2)-O(22)	1.990(5)	Mo(5)-O(2)	2.397(5)	C(2)-C(3)	1.384(6)	C(16)-C(17)	1.384(7)
Mo(2)-O(1A)	2.388(5)	$M_0(5)-O(6)$	1.803(5)	C(3)-C(4)	1.374(7)	C(17)-C(18)	1.402(7)
Mo(2)-O(10A)	2.033(6)	$M_0(5)-O(11)$	2.038(5)	C(4)-C(5)	1.399(6)	C(18)-C(19)	1.382(6)
Mo(2)-O(11A)	1.847(5)	$M_0(5)-O(16)$	1.764(6)				

表4 主要键角

Table 4 Selected Bond Angles

angles	(°)	angles	(°)	angles	(°)
O(1)-Ge(1)-O(2)	108.1(2)	O(2)-Ge (1) -O (4)	112.6(2)	C(9)-N(1)-C(10)	123.2(5)
O(1)-Ge(1)-O(3)	107.8(2)	O(3)-Ge(1)-O(4)	112.4(2)	C(11)-N(2)-C(19)	96.6(4)
O(2)-Ge(1)-O(3)	104.0(2)	C(1)-N(1)-C(9)	116.0(5)	C(11)-N(2)-C(20)	127.9(6)
O(1)-Ge(1)-O(4)	111.5(3)	C(1)-N(1)-C(10)	120.4(4)	C(19)-N(2)-C(20)	133.7(5)

图 3 化合物分子结构图 Fig. 3 Drawing of the anion with numbering scheme

最大的 O-Ge-O 键角 112.6(2)°,与正四面体中的 109°28′相差甚大,表明中心四面体发生了严 重的畸变。Ge-O 键长为 1.627(5)~1.774(5)Å。四个 Ge-O 键的平均长度为 1.726Å,非常接近 GeMo₁₂O₄₀⁴⁻中 Ge-O 键长(1.73Å)¹¹¹¹,表明杂多阴离子还原后对 Ge-O 键影响很小。Mo-O 键长 介于 1.626(5)和 2.415(5)Å之间。从表中数据可以看出,Mo-O₄ 键最短,介于 1.626(5)~1.654 (5)Å之间,与双键相当,其平均键长为 1.643Å,比 GeMo₁₂O₄₀⁴⁻中相应的平均键长短 0.087Å; 最长的 Mo-O₄ 键在 2.2570(6)~2.415(5)Å之间,平均长度为 2.355Å,比 GeMo₁₂O₄₀⁴⁻中的相 应键长 0.065Å。桥氧键长在 1.749(5)到 2.056(5)Å之间,平均长度为 1.903Å。由键长数据 可知,在标题化合物中,组成阴离子的八面体中的 Mo = O₄ 双键缩短, Mo-O₄ 键伸长,使得 MoO₆ 八面体畸变增大,与文献报道的杂多阴离子还原后具有更高的对称性不一致¹³¹,这一方面是由 于阴离子得到了电子,另一方面则由于有机基团的给电子作用¹¹²。

阳离子中 C-C 键长和 C-C-C 键角均在正常范围 ,但 N(2)-C(20) 键明显短 (1.085Å), N(2) -C(19) (1.565Å)键明显长, 而其键角 C(19)-N(2)-C(20) 明显增大(133.7°), 这可能是由于阴 离子的作用。

参考文献

- [1] Borshch S. A., Bigot B. Chemistry Physics Letter, 1993, 212, 398.
- [2] WANG En-Bo(王恩波), XU Lin(许 林), HUANG Ru-Dan(黄茹丹) et al Zhongguo Kexue B(Sci. Chin. B), 1991, 11, 1121.
- [3] Livage J., Launary J. P., Fournier M., Jeannin Y. J. Am. Chem. Soc., 1982, 104, 3194.
- [4] WANG En-Bo(王恩波), HAN Fu-Qin(韩福芹), WANG Zuo-GEing(王作屏) et al Huaxue Xuebao(Acta Chimica Sinica), 1991, 49, 1114.
- [5] WANG En-Bo(王恩波), REN Qun-Xiang(任群翔), WANG Zuo-Ping(王作屏) et al Wuji Huaxue Xuebao(J. of Inorg. Chem.), 1993, 9, 65.
- [6] WANG En-Bo(王恩波), ZHANG Lan-Cui(张澜萃), SHEN En-Hong(沈恩洪) et al Zhongguo Kexue B(Sic. Chin. Seri. B), 1992, 7, 673.
- [7] WANG En-Bo (王恩波), ZHANG Lan-Cui(张澜萃), WANG Zuo-Ping(王作屏) et al Gaodeng Xuexiao Huaxue Xuebao(Chem. J. of Chin. Univer), 1992, 8, 1017.
- [8] Nieves C. P., Louis C. W. Baker. J. Am. Chem. Soc., 1992, 114, 10384.
- [9] Claude R. D., Michel F. et al Inorg. Chem., 1983, 22, 207.
- [10]WANG En-Bo(王恩波), WANG Li-Geng(王力耕), WANG Hui-Zhong(王惠忠) et al Huaxue Xuebao(Acta Chimica Sinica), 1994, 52, 1145.
- [11] Pope M. T. Heteropoly and Isopoly Oxometalates, Springer-Verlag: Berlin, 1983, p112.
- [12] Niu Jingyang, You Xiaozeng, Duan Chunying Inorg. Chem., 1996, 14, 4211.

Studies on the Synthesis, Structure and Properties of a Mixed-valence Molybdogermanate Salt

NIU Jing-Yang WANG Jing-Ping* (Department of Chemistry, Henan University, Kaifeng 475001) ZHOU Zhong-Yuan (Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041)

The single electron reduced compound, $[C_{10}H_{10}N]_4$ HGeMo₁₂O₄₀, was synthesized and characterized by elements analysis, IR and UV spectra. The crystal structures analysis show space group P_{21}/n , a = 1.4803(3), b = 1.2582(3), c = 1.7712(4) nm, $\beta = 98.31(3)^\circ$, V = 3.264(16) nm³. The final reliability factor is R = 0.0646 for 4296 observed reflections. The ESR data indicate that the single electron in the anions is delocalized among the molybdenum atoms.

Keywords: mixed-valence heteropolyoxometalate crystal structure