2- 甲酯基丙基合锡(II)配合物的固相合成

田来进* 丁养军 赵 斌 周正宇 (曲阜师范大学化学系,曲阜 273165)

利用 2- 甲酯基丙基三氯化锡与六甲基磷酰三胺(L¹)、苯甲醛缩邻氨基苯酚(HL²)及 2- 甲基 -8- 羟基喹啉(HL³)的低热固相反应合成了六个新的含 2- 甲酯基丙基的锡(M)配合物[SnCl₃{CH₂CH(CH₃)CO₂CH₃}L'_n}(n = 1, 2)和[SnCl_{3-n}{CH₂CH(CH₃)CO₂CH₃}L_n](n = 1, 2; L = L², L³),通过元素分析、红外光谱、核磁共振对其结构进行了表征。用 X- 射线单晶衍射测定了[SnCl₃{CH₂CH(CH₃)CO₂CH₃}L']的晶体结构,晶体属于单斜晶系,空间群 $P2_1/n$, a = 8.0173(12), b = 25.867(2), c = 10.4353(9)Å, $\beta = 102.725(7)^\circ$, Z = 1。该配合物为含有 L' 的氧原子和分子内羰基氧原子配位的畸变八面体结构。

关键词: 锡(W)配合物 固相反应 2-甲酯基丙基三氯化锡 晶体结构 分类号: 0614.12

自从 80 年代初发现有机锡配合物具有较强的抗癌活性以来^[1],人们对其合成及生物活性 的研究倍加重视^[2-5]。现已发现许多有机锡化合物的抗癌活性超过了临床上使用的顺铂,是一 类极有希望开发应用的高效广谱抗癌新药^[2-5],因此,合成具有多种结构类型的有机锡化合物 对于系统研究其生物活性特别是抗癌活性,进一步探讨构效关系具有重要意义。有机锡配合物 通常是由有机锡和配体在适当的溶剂中直接反应而制备的,本文利用 2- 甲酯基丙基三氯化锡 $Cl_3SnCH_2CH(CH_3)CO_2CH_3$ 与六甲基磷酰三胺(L¹)、苯甲醛缩邻氨基苯酚(HL²)及 2- 甲基 -8- 羟 基喹啉(HL³)的固相反应合成了六个新的有机锡配合物[SnCl_3{CH_2CH(CH_3)CO_2CH_3}L¹](*n* = 1,2)和[SnCl_3-__{CH_2CH(CH_3)CO_2CH_3}L_](*n* = 1,2; L = L², L³),通过元素分析、红外光谱、核磁 共振对其结构进行了表征,并用 X- 射线单晶衍射测定了[SnCl_3{CH_2CH(CH_3)CO_2CH_3}L¹]的晶 体结构。

1 实验部分

1.1 试剂和仪器

2-甲酯基丙基三氯化锡按文献^[6]方法合成,熔点 84~86℃(文献值^[6],85℃),苯甲醛缩邻 氨基苯酚西夫碱由苯甲醛和邻氨基苯酚在乙醇中直接缩合制得,熔点 113℃,其他试剂均为市 售分析纯或化学纯试剂。元素分析用 PE 2400 元素分析仪,锡含量按文献^[7]方法测定;红外光 谱用日立 IR-810 红外光谱仪(KBr 压片);核磁共振用 Bruker AC-80 核磁共振仪(TMS 作内标, CDCl₃ 为溶剂);熔点测定用 TX4-100A 显微熔点仪;摩尔电导用 DDS-11C 电导率仪。

1.2 配合物的合成

1.2.1 [SnCl₃{CH₂CH(CH₃)CO₂CH₃}L¹_n](n=1,2)的合成

收稿日期:2000-02-08。收修改稿日期:2000-04-24。

* 通讯联系人。

晶体材料国家重点实验室开放基金和山东省自然科学基金资助项目(No. Q97B03123)。

第一作者:田来进,男,37岁,教授;研究方向:金属有机化学。

在室温下,将 0.326g(1mmol) 2-甲酯基丙基三氯化锡与 0.179g(1mmol) 六甲基磷酰三胺 于玛瑙研钵中混合研磨 5min,混合物由粘稠逐渐固化,在 60℃烘箱中放置过夜,得到白色粉末 固体,用无水乙醚充分洗涤后真空干燥。按同样步骤制得 1:2 配合物。

1.2.2 [SnCl_{3-n}{CH₂CH(CH₃)CO₂CH₃}L_n] ($n = 1, 2; L = L^2, L^3$)的合成

在室温下,将 0.197g(1mmol)苯甲醛缩邻氨基酚或 0.159g(1mmol) 2- 甲基 -8- 羟基喹啉、 0.056g(1mmol) KOH 和 0.326g(1mmol) 2- 甲酯基丙基三氯化锡于玛瑙研钵中充分混合研磨 15min,混合物变为深黄色,在 60℃烘箱中放置过夜,得到深黄色粉末固体。产物依次经冷水、 冷甲醇洗涤后真空干燥。同法制得 1:2 配合物。所合成的配合物的编号、熔点、产率及元素分析 列于表 1。

		1a	DIE I MI	eiting Poini	, Yield and Eler	nental Analysis	for the Complexe	5			
complex		ıplex M. P.		yield		elemental analysis (calcd.)					
No	n	L	⁄℃	1%	С	Н	N	Sn			
1	1	L'	127	94. 4	26. 12(26. 14)	5.23(5.38)	8.26(8.31)	23.08(23.49)			
2	2	L^1	31	90. 1	29.43(29.82)	6.36(6.63)	12.33(12.28)	17.21(17.34)			
3	1	L²	62	91. 3	44.46(44.40)	3.87(3.93)	2.80(2.88)	24. 18(24. 38)			
4	2	L²	117	88.3	57.43(57.48)	4.44(4.51)	4.22(4.33)	18.21(18.33)			
5	1	L^3	86	92. 2	39.89(40.13)	3.60(3.82)	3.04(3.12)	26. 19(26. 44)			
6	2	Ľ	178	90.1	52.48(52.53)	4.32(4.41)	4.94(4.90)	20.74(20.77)			

表 1 配合物的熔点、产率及元素分析

1.3 X-射线单晶衍射

将配合物 1 的甲醇溶液在室温下慢慢挥发,得到无色单晶,取一大小为 0.35 × 0.40 × 0.25 mm³ 的单晶用于衍射实验,在 Nicolet R3m/E 四圆衍射仪上使用石墨单色器, Mo Ka 辐射 ($\lambda = 0.71073$ Å),以 θ -2 θ 扫描方式,在 2.2° $\leq \theta \leq 25.0$ °范围内共收集 5079 个衍射点,其中 2434 个独立衍射点,可观测的独立衍射点为 1624 个 [$I > 2.0\sigma(I)$],数据进行 Lp 因子校正,最小二乘法修正,最终的 R = 0.0538, Rw = 0.1500。在最终的差值 Fourier 图上最高电子密度 峰为 0.64e · Å⁻³, $\Delta/\sigma = 0.000$,S = 1.12。整个计算用 SHELXTL^[8]程序包完成。非氢原子坐标 和等效热参数列于表 2。配合物 1 的晶体参数为:C₁₁H₂₇Cl₃N₃O₃PSn, M = 505.38,单斜晶系,空间群 $P2_1/n$, a = 8.0173(12), b = 25.867(2), c = 10.4353(9)Å, $\beta = 102.725(7)$ °, V = 2111.0 (4)Å³, Z = 1, Dc = 1.578Mg·m⁻³, F(000) = 1001, μ (Mo K α) = 1.7mm⁻¹, T = 298(2)K。

表 2 配合物 1 的非氢原子坐标和等效热参数

Table 2Final Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\times 10^4 Å^2$)of the Non-hydrogen Atoms for Complex 1

atom	x	<u>y</u>	<u>z</u>	<u>U(eq)</u>	atom	x	у	z	U(eq)
Sn(1)	2429(6)	1248(2)	2468(6)	546(4)	C(1)	4166(10)	1796(4)	3525(8)	650(4)
CI(1)	1433(3)	4540(11)	1531(3)	777(12)	C(2)	5479(19)	1574(8)	4603(18)	740(8)
Cl(2)	134(3)	1771(13)	1319(3)	1020(13)	C(3)	7090(14)	1888(5)	5040(12)	1210(7)
Cl(3)	1216(5)	1074(16)	4397(3)	1156(14)	C(4)	5848(11)	1012(6)	4275(10)	730(5)
P(1)	3920(3)	1308(12)	- 500(2)	742(15)	C(5)	7514(12)	274(5)	5091(10)	790(6)
0(1)	3774(7)	1325(2)	917(5)	630(3)	C(6)	780(3)	1619(10)	- 1950(2)	(01)000
0(2)	4866(7)	737(3)	3526(6)	620(3)	C(7)	1288(18)	796(7)	- 1906(12)	1590(8)
0(3)	7179(8)	811(4)	5120(7)	830(4)	C(8)	5510(4)	740(13)	- 2007(19)	1080(9)
N(1)	2186(13)	1230(5)	- 1610(8)	1100(5)	C(9)	6390(12)	610(5)	366(10)	1010(5)
N(2)	5122(10)	826(4)	- 690(7)	790(4)	C(10)	438(4)	2023(11)	- 2220(3)	1530(15)
N(3)	4340(4)	1884(6)	- 929(18)	560(8)	C(11)	5554(13)	2220(5)	107(14)	1090(7)

2 结果与讨论

室温下,这些配合物较难溶于水、石油醚、乙醚等溶剂,能溶于醇、丙酮、氯仿及硝基苯,它们在硝基苯中的的摩尔电导数值在 4.66~6.42S · cm² · mol⁻¹,表明这些配合物为非电解 质^[9]。

2.1 配合物的 IR 谱

配合物的主要 IR 数据见表 3。在 1:1 配合物(1,3,5)中, $\nu_{(C=0)}$ 和 $\nu_{(C-0)}$ 分别在~1655 和~ 1270cm⁻¹,表明分子内存在羰基氧原子对锡原子配位形成的五员螯合环^[6]。在 1:2 配合物(2, 4,6)中, $\nu_{(C=0)}$ 和 $\nu_{(C-0)}$ 分别在~1730和~1200cm⁻¹,表明羰基氧原子对锡原子的配位被另一 配位原子所替代,五员螯合环被打破,羰基游离出来^[10]。配合物 1 和 2 的 $\nu_{(P=0)}$ 由游离配体的 1215cm⁻¹移至~1110cm⁻¹,配合物 3 和 4 的 $\nu_{(C=N)}$ 由配体的 1630cm⁻¹移至~1610cm⁻¹,配合 物 5 和 6 的 $\nu_{(C=N)}$ 由配体的 1580cm⁻¹移至~1568cm⁻¹,证明氧原子和氮原子分别参与了对锡 原子的配位^[10,11]。配体 HL²和 HL³在~3200cm⁻¹的伸缩振动在配合物 3~6中消失了,而在~ 530cm⁻¹附近出现了 Sn-O 键的伸缩振动,而且配体 HL²和 HL³的酚氧键(Ph-O)分别由原来的 1312 和 1095cm⁻¹移至 1325 和 1110cm⁻¹,说明配体通过氧原子和锡原子进行了键合^[11,12]。因 此,配合物 1,3,5 为分子内羰基氧原子及配体的氧、氮原子参与配位的六价锡化合物,而配合 物 2,4,6 则为配体的两个氧原子、两个氮原子参与配位的六价锡化合物。

complex	C = 0	C – O(ester)	P = 0	C = N	Ph – O	Sn←0/Sn - 0
1	1650vs	1274s	1110vs			470w
2	1730vs	1207s	1120vs			478w
3	1658vs	1264s		1604s	1329s	542m
4	1726vs	1202s		1615s	1316s	534m
5	1660vs	1270s		1568s	1109s	525m
6	1728vs	1200s		1568s	1112s	520m

表 3 配合物的红外光谱数据 Table 3 IR Data for the Complexes (ν/cm⁻¹)

2.2 配合物的 'H NMR 谱

配合物的 'H NMR 数据列于表 4。配合物的 2-C 质子及 3-C 上甲基质子表现为正常的多重 峰 (δ , ~3.10)和二重峰 (δ , ~1.40),而 1-C 上的两个氢则由于邻近的不对称中心成为不等价 质子表现为两组双二重峰 (δ , ~1.60和~2.10),每组双二重峰的偶合常数约为 8和 12Hz。配 合物 1,3,5 的甲氧基质子和配合物 2,4,6 相比,出现在低场,这是由于羰基氧原子对锡原子的 分子内配位降低了甲氧基质子的电子屏蔽所致^[6]。在配合物中,L¹ 的 CH₃、L² 的 CH = N 和 L³ 的 N = C - CH₃ 质子分别由游离配体时的 2.60、8.15和 2.58 移至 2.70、8.50和 2.64,进一步证 裹 4 配合物的 'H NMR 数据

CH L complex CH₃O CH3 CH₂Sn 1.58, 2.14dd 2.71d (CH₃) 1 3.95s 1.40d 3.21m 2 3.82s 1.40d 3.18m 1.55, 2.12dd 2.70d (CH₃) 1.39d 1.64, 2.12dd 8.52s(CH = N), 7.98~7.01(芳环) 3 3.90s 3.10m 8.48s(CH=N),7.98~7.01(芳环) 1. 58, 2. 10dd 4 3.79s 1.38d 3.07m 1. 62, 2. 09dd 2.64s(CH3), 7.00~7.70, 8.22(芳环) 3.04m 5 3.86s 1.36d 1.56, 2.08dd 2.63s(CH3), 7.02~7.66, 8.24(芳环) 6 3.70s 1. 36d 2.95m

Table 4 ¹H NMR Data for the Complexes

2.3 配合物1的晶体结构

配合物 1 的分子结构见图 1,部分键 长和键角列于表 5。配合物 1 为含有分子 内酯羰基氧和配体 (L¹) 氧对锡原子配位的 六配位的锡化合物,六个配位原子在空间 排列为畸变的八面体结构,键角 Cl(1) -Sn (1) -C(1)、Cl(2) -Sn(1) -O(2) 和 Cl(3) -Sn (1) -O(1)分别为 158.4(3)、176.12(16) 和 171.74(17)°。Sn(1) -O(1)的键长 (2.142 (5)Å)比 Sn(1)-O(2)(2.415(7)Å)短,说明 P=O→Sn 配键比分子内的 C=O→Sn 配 键强,因此,当配体 L¹ 与底物的摩尔比大

Fig. 1 Molecular Structure for Complex 1

于 1:1 时,C=O→Sn 可被 P=O→Sn 取代而生成 1:2 配合物。

表	5	配合物:	1 的部分	→ 罐长和罐角
	-			

Table 5	Selected I	Bond	Lengths	(Å)	and Bond	Angles	(°)	for	Comple	ex 🛛	1
---------	------------	------	---------	-----	----------	--------	-----	-----	--------	------	---

	_				
Sn(1)-Cl(1)	2.339(3)	Sn(1)-Cl(2)	2.383(3)	Sn(1)-Cl(3)	2.463(4)
Sn(1)-O(1)	2.142(5)	Sn(1)-C(1)	2. 119(9)	Sn(1)-O(2)	2.415(7)
Cl(1)-Sn(1)-Cl(2)	97.65(10)	$C[(2)-S_n(1)-C[(3)]$	96.60(12)	$Cl(3) - S_{2}(1) - O(2)$	87 22(17)
Cl(1)-Sn(1)-Cl(3)	91.21(12)	Cl(2)-Sn(1)-O(1)	91. 64(16)	Cl(3)-Sn(1)-C(1)	91.7(2)
Cl(1)-Sn(1)-O(1)	87.03(16)	Cl(2)-Sn(1)-O(2)	176. 12(16)	O(1)-Sn(1)-O(2)	84.6(2)
Cl(1)-Sn(1)-O(2)	82.97(18)	Cl(2)-Sn(1)-C(1)	103.2(3)	O(1)-Sn(1)-C(1)	87.1(3)
Cl(1)-Sn(1)-C(1)	158.4(3)	Cl(3)-Sn(1)-O(1)	171.74(17)	O(2)-Sn(1)-C(1)	75.8(3)

参考文献

- [1] Crowe A. J., Smith P. J., Atassi G. Chem. Biol. Interact., 1980, 32(1~2), 71.
- [2] YANG Zhi-Qiang (杨志强), XIE Qing-Lan (谢庆兰) Youji Huaxue (Chinese J. Org. Chem.), 1996, 16(2), 111.
- [3] Gielen M. Metal-Based Drugs, 1995, 2(2), 99; Goord. Chem. Rev, 1996, 151(1), 41.
- [4] Gieln M., Pan Huade Eur Pat Appl EP 489596, 1992(CA, 117, 11807x).
- [5] YANG Pin(杨 频) The Paper Abstract Volume of Third National Coordination Chemistry Conference(第三届全国 配位化学会议论文摘要集), Xi'an, 1997, A7.
- [6] Hutton R. E., Burly J. W., Oakes V. J. Organomet. Chem., 1978, 156(2), 369.
- [7] YANG Shu(杨 姝), LI Chen(李 晨), LI Bing(李 冰) et al Huaxue Yu Zhanhe (Chemistry and Adhesion), 1998, (4), 220.
- [8] Nicolet XRD Corporation SHELXTL User's Manual, Revision 4.1, Madison, Wisconsin, USA, 1985.
- [9] Geary W. J. Coord. Chem. Rev., 1971, 7(1), 81.
- [10] Maughan D., Wardell J. L., Burley J. W. J. Organomet. Chem., 1981, 212(1), 59.
- [11] Deb D. K., Ghosh A. K. Polyhedron, 1986, 5(3), 863.
- [12] Garnovskii A. D., Nivorozhkin A. L., Minkin V. I. Coord. Chem. Rev., 1993, 120(1~2), 1.

Synthesis of the Tin (W) Complexes of 2-Methoxycarbonylpropyl in Solid State

TIAN Lai-Jin DING Yang-Jun ZHAO Bin ZHOU Zheng-Yu (Department of Chemistry, Qufu Normal University, Qufu 273165)

The six new tin (W) complexes of containing 2-methoxycarbonylpropyl, $[SnCl_3\{CH_2CH(CH_3) CO_2CH_3\}L_n]$ (n = 1, 2) and $[SnCl_{3-n}\{CH_2CH(CH_3) CO_2CH_3\}L_n]$ (n = 1, 2; $L = L^2$, L^3), were synthesized by reaction of 2-methoxycarbonylpropyltin trichloride with hexamethylphosphoramide (L^1), 2-phenylmethyleneiminophenol (HL^2) and 2-methyl-8-hydroxyquinoline (HL^3) in solid state at low-heating temperature and characterized by means of elemental analysis, IR, ¹H NMR spectra. The crystal structure of the complex, $[SnCl_3\{CH_2CH(CH_3) CO_2CH_3\}L^1]$, was determined by X-ray single crystal diffraction. The crystal belongs to monoclinic with space group $P2_1/n$, a = 8.0173(12), b = 25.867(2), c = 10.4353(9) Å, $\beta = 102.725(7)^\circ$, Z = 1. The tin atom in this structure is in a distorted octahedral coordination environment with the oxygen atoms of L^1 and intramolecular carbonyl.

Keywords:	tin (IV) complex	solid state reaction	2-methoxycarbonylpropyltin trichloride
	crystal structure		