研究简报

模板固相合成磷酸铝及其表征

赵吉寿*." 颜 莉 "忻新泉b

(*云南民族学院化学系,昆明 650031)

(b南京大学配位化学研究所,国家重点实验室,南京 210093)

关键词:	磷酸铝	固相合成	模板	表征
分类号:	0614.3			

T-磷酸铝的合成用水热方法,需 950℃,20 天才能得到^[1]。研究结果表明用固相方法, 150℃,2 小时合成了 T-磷酸铝,同样条件下有模板存在可以得到磷酸铝微晶和 T-磷酸铝,用 XRD、IR、ICP 和化学分析方法对产物进行了表征。

磷酸铝是一类具有广而重要应用的材料,过去十多年里,应用模板在胶态介质中水热方法 合成了具有微孔、小孔、中孔的一系列磷酸铝类材料。由于其具有多种结构和组成,对热和水热 的稳定性,使得它们在吸附分离、催化剂及催化剂载体、土壤科学、污水处理、医药上调节胃酸 等中起着重要作用。特别是在催化领域合成具有不同分子大小均匀孔道结构,连续孔道体系和 大的晶体比表面等特性的新型材料一直是化学家们的长期愿望,固相方法已经合成了很多类 化合物^[2,3],用该方法合成磷酸铝的工作才刚刚开始,已经合成了 T-AIPO₄^[1],本文以四种化合 物为模板在固相条件下,150℃,2小时合成了磷酸铝,经 600℃左右焙烧后,并用 XRD、IR、ICP 和化学分析方法对产物进行了表征。

1 实验部分

AlCl₃·6H₂O(北京化工厂),磷酸二氢铵和草酸铵(成都化学试剂厂),三乙烯二胺、缬氨酸、醋酸铵(上海试剂一厂),30%过氧化氢(上海桃蒲化工厂),8-羟基喹啉(中国前进化学试剂厂),喹啉(上海亭新化工厂)等试剂均为分析纯。日本理学 D/maxB-3B 型和 XD-3A 型全自动 X 射线衍射仪,FTS-40 傅里叶变换红外光谱仪(美国),日本岛津 ICPS-1000 II型 ICP 感应偶合等离子体发射仪,WG2003 型台式干燥箱(中国重庆四达实验仪器厂),SX-4-10 型马福炉(上海实验电炉厂)。

将 AlCl₃ · 6H₂O 和磷酸二氢铵分别与模板按摩尔比 1:1:1 准确称量后,在玛瑙研钵中研 磨均匀,置于恒温干燥箱 150℃恒温反应 2 小时,产物冷却至室温研细,用蒸馏水充分洗涤、过 滤、干燥,再放入马福炉内 600℃左右焙烧数小时,得白色粉末晶体,三乙烯二胺,草酸铵产率 分别为 69.7% 和 65.7%,缬氨酸,醋酸铵模板得到 T-AlPO4 产率分别 80% 和 82%。

*通讯联系人。

收稿日期:2000-01-11。收修改稿日期:2000-04-07。

国家自然科学基金资助项目(No. 29631040)和云南省高校测试基金资助。

第一作者:赵吉寿,男,43岁,硕士,副教授;研究方向:配位化学和应用化学。

粉末晶体 XRD 谱由全自动 X 射线衍射仪测定,铜 Kα 靶,镍滤光片,电压 35kV,电流 20mA。红外光谱用 FTS-40 型光谱仪测定,KBr 压片,样品中的 Al 和 P 含量用 ICP 感应偶合等 离子体发射仪测定,高频功率 1.2kW。用磷钼酸喹啉的形式滴定测量 PO4³⁻和 8-羟基喹啉铝的 形式重量法测定铝的百分含量。

2 结果与讨论

三乙烯二胺为模板合成 AIPO4 微晶的 XRD 谱图见图 1,原料三氯化铝,磷酸二氢铵和三乙 烯二胺的 XRD 谱图分别为 A、B、C,反应后未水洗的混合物 XRD 谱图为 D,水洗、焙烧后 AIPO4 晶粒的 XRD 谱图为 E,从粗产物的谱图看出,谱图中不存在各反应物的 XRD 的特征衍射峰, 也不是各反应物 XRD 的混合衍射峰,水洗、焙烧后 AIPO4 的 XRD 衍射峰宽化,表明其晶粒大 小在纳米的范围。由于 TEM 测定时聚合,未获得较好的照片。

草酸铵为模板合成 AIPO4 微晶的 XRD 谱图见图 2, C 为草酸铵的 XRD 谱图、D 为反应后 未水洗产物 XRD 谱图、E 为水洗、焙烧 AIPO4 的 XRD 谱图。产物的 XRD 衍射峰宽化,表明所得 产物为纳米晶粒,样品 TEM 测定结果见图 3(A),从图中可以看出所得产物是球状晶粒,根据 衍射峰的宽度估算其尺寸分布在 20~30nm,这与 XRD 谱图获得的结果一致。样品的电子衍射 图见图 3(B)。

- 2017) 图 1 氯化铝、磷酸二氢铵、三乙烯二胺、粗产物、 磷酸铝微晶的 X- 衍射谱图
- Fig. 1 X-ray power diffraction patterns of the sourses and product: (A) AlCl₃ • 6H₂O, (B) NH₄H₂PO₄, (C) C₆H₁₂N₂, (D) crude product, (E)AlPO₄

图 2 草酸铵、粗产物、磷酸铝微晶的 X- 衍射谱图 Fig. 2 X-ray power diffraction patterns of the sourse and product: (C) (COONH₄)₂, (D) crude product, (E) AlPO₄

缬氨酸模板合成 AIPO4 的 XRD 谱图见图 4, C 为缬氨酸的 XRD 谱图, D 为反应后未水洗 的粗产 XDR 谱图, E 为水洗、焙烧后 AIPO4 的 XRD 谱图,从图 4 可以看出,产物中未发现各反 应物的衍射峰,水洗、焙烧后出现 AIPO4 的特征衍射峰。所得谱图的主要衍射峰 d 值与T-AIPO4

(E) AlPO₄

Fig. 3 TEM micrograph(A) and diffraction pattern(B) for the nanocrystalline of the AIPO4

的衍射峰 d值一致。醋酸铵模板合成磷酸铝的 XRD 谱图见图 5,图 5结果分析与图 4分析相 同,它们的主要衍射峰数据列于表 1 中。用水热方法 950℃,20 天合成得到的 T-磷酸铝主要衍 射峰 d 值分别为 4.37,4.13,3.86 和 2.55。缬氨酸、醋酸铵模板固相合成磷酸铝的 d 值与它们 的基本一致。

表!	缬氨酸、醋	酸铵模板	合成磷酸铝的	ήd	值和20角
----	-------	------	--------	----	-------

Table 1 d and 2 θ Results of the Templates Amino-Isovaleric Acid and Ammonium Acetate

and product: (C) C2H2NO2, (D) crude product, (E) AIPO4

各种模板合成磷酸铝的 IR 光谱数据列于表 2 中, 草酸铵模板合成样品中, 1125cm⁻¹ 处强 的吸收峰归属为 PO4 或 AlO4 四面体的非对称伸缩振动吸收峰, 708、723cm⁻¹ 中强的吸收带归 属为 PO4 或 AlO4 四面体的对称伸缩振动, 490cm⁻¹ 强的吸收带归属为 P-O 或 Al-O 的弯曲振动 吸收, 3450cm⁻¹ 吸收带归属为 H₂O 和 OH 的吸收峰^[4-5]。缬氨酸、醋酸铵和三乙烯二胺模板合 成的磷酸铝, 它们的 IR 谱图归属同上, 其归属结果已列于表 2 中。

表 2 不同模板合成磷酸铝的红外光谱图

Table 2	IR	Results o	f the	AlPO ₄	by	Prepared	in	Different	Templates
---------	----	------------------	-------	-------------------	----	----------	----	-----------	-----------

template		v,	′cm ⁻¹	
ammonium oxalate	3450	1125(s)	708, 723(ms)	490(s)
amino-isovaleric acid	3466	1168(s)	711, 728(ms)	481(s)
ammonium acetate	3438	1131(s)	711, 729(ms)	483(s)
triethylenediamine	3439	1129(s)	713, 729(ms)	494(s)

不同模板合成 AIPO4 的 ICP 测定 Al 和 P 的含量和化学分析 Al 和 PO43-的含量结果列于表

3.

表 3	磷酸铝的 ICP	分析和化学分析数据
-----	----------	-----------

Table 3 ICP and Chemical Analysis Results of the AlPO4

	ICP analysis				chemical analysis			
template	finding/%		calculation/%		finding/%		calculation/%	
	Al	Р	Al	Р	Al	PO43-	Al	PO4 ³⁻
ammonium oxalate	21.50	25.23	22. 12	25.40	21.68	77.62	22. 12	77.88
amino-isovaleric acid	21.26	24. 76	22. 12	25.40	22.06	77.99	22.12	77.88
ammonium acetate	21. 97	24.81	22.12	25.40	21.65	78.13	22. 12	77.88
triethylenediamine	21.62	25.13	22. 12	25.40	21.76	78.06	22.12	77.88

从 ICP 测定和化学分析结果看,不同模板合成的磷酸铝 Al 的含量与理论值基本一致,略 有偏低,可能是样品中少量水分子的存在所致,从 IR 谱图也可得到证明。

各种模板合成 AIPO₄ 加热到 1000℃ 骨架仍未出现塌陷,在 TCA-DTA 图上未出现异常峰。 从以上分析可以得出结论, T- 磷酸铝用水热方法合成需 950℃, 20 天才能得到,但用固相 方法或模板固相方法, 150℃, 2 小时就可合成得到 T- 磷酸铝,但模板的性质不同,在同样条件

下还可以得到磷酸铝微晶。

参考文献

- [1] BIN Liang Ph. D. Dissertation of Nanjing University(南京大学博士论文), 1997.
- [2] Edith M. Flanigen, Brent M. Lok Rlyle Patton, Stephen T. Wilson Pure & Appl. Chem., 1986, 58(10), 1351.
- [3] ZHOU Yi-Ming (周益民), XIN Xin-Quan(忻新泉) Wuji Huaxue Xuebao(Chinese Journal of Inorganic Chemistry), 1999, 3, 273.
- [4] DU Yi-Bo(杜以波), Li Feng(李 峰), He Jing(何 静) et al Wuji Huaxue Xuebao(Chinese Journal of Inorganic Chemistry), 1998, 14(1), 79.
- [5] Sunil Ashtekar, Satyanarayana V. V. Chilukuri, Prakash A. M., Harendranath C. S., Dipak K. Chakrabarty J. Phys. Chem., 1995, 99, 6937.

Template Solid-State Syntheses and Characterization of AlPO₄

ZHAO Ji-Shou^a YAN Li^a XIN Xin-Quan^b

 (* Department of Chemistry yunnan Nationalities Institute, Kunming 650031)
(b Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093)

T-Aluminium phosphate(AlPO₄) was usually synthesized by water-thermal method with 20 day 950°C. The experimental results indicate that AlPO₄ can be prepared by solid-state syntheses in existed different templates at low temperature (150° C) and in short time(2 hours), respectively, and they were characterized by chemical analysis, ICP, IR, XRD.

Keywords:	aluminium phosphate	solid-state synthesis	template	characterization
		•	-	