K 研究简报 Conservation of

第1期

2001年1月

Mg-Al-CO₃ 与 Zn-Al-CO₃ 水滑石热稳定性差异的研究

张春英 矫庆泽 段 李 蕾 雪*

(北京化丁大学可控化学反应科学与技术基础教育部重点实验室 北京 100029)

关键词:	Mg-Al-CO3 水滑石	Zn-Al-CO3 水滑石	热稳定性差异
分类号:	0641.3		

层状双金属氢氧化物 (Lavered double hydroxides, 简称 LDHs) 是一类近年来发展迅速的阴 离子型粘土,又称水滑石,其组成通式为:[M(II),_,M(II),(OH),]*+A,/,"-mH,O,其中 M(II)是二 价金属离子,M.())是三价金属离子,A⁻⁻是阴离子。这种材料是由相互平行的层板组成,层板带 有永久正电荷 层间具有可交换的阴离子以维持电荷平衡。通过离子交换可在层间嵌入不同的 基团,制备许多功能材料,被广泛用作催化剂、吸附剂及油田化学品等,已引起人们的关 对两者热稳定性存在的差异进行了研究,这对深化此类材料的认识具有参考作用。

1 实 验

1.1 实验方法

实验所用试剂均为分析纯,水为去离子水。

Mg-Al-CO₃与Zn-Al-CO₃水滑石的制备采用成核/晶化隔离法^[5]。

采用 EDTA 滴定法,以铬黑T及二甲酚橙为指示剂,确定样品中实际 Mg/Al 比及 Zn/Al tt.

12 表 征

采用日本理学 Rigaku Model D/max-3B 型 X-射线粉末衍射仪 (Cu Ka 射线) 表征晶体结 构 50SXR 型 F-T 红外光谱仪 KBr 压片 记录样品在 4000~200cm⁻¹ 范围的吸收谱图 :PCT-2A 型差热天平,升温速率为10℃·min⁻¹, DTA 量程为 50µV 记录样品的 TG-DTA 曲线。

结果与讨论 2

2.1 Mg-Al-CO₃ 与 Zn-Al-CO₃ 水滑石的晶体结构分析

分别在相同的条件下采用成核/晶化隔离法^[5]制备了投料摩尔比分别为 Mg/Al = 2, 3, 4 及 Zn/Al = 2, 3, 4 的水滑石, EDTA 滴定法分析相应样品实际 Mg/Al 比分别为 1, 98, 2, 96 及 3.98; Zn/Al 比分别为 1.95, 2.62 及 3.96, 可见样品实际 Mg/Al 比及 Zn/Al 比基本与投料摩 尔比一致。

收稿日期 2000-05-29。收修改稿日期: 2000-10-20。 中国石化总公司资助项目 (No. X599012)。 * 通讯联系人。本科生白晓燕参加了部分实验工作。

第一作者 :李 蕾 ,女 ,38 岁 副教授 ;研究方向 :层状结构材料。

上述样品分别进行了 XRD 谱图分析 其结果列于表 1。

表 1 Mg-Al-CO₃ 与 Zn-Al-CO₃ 水滑石的 XRD 结果

Table 1 XRD Data of Mg-Al-CO₃ and Zn-Al-CO₃ Hydrotalcite Samples

1.1.1	Mg	Mg-Al-CO₃ (d∕nm)*			Zn-Al-CO ₃ (d/nm)*		
пкі	1	2	3	1	2	3	
003	0.752	0.758	0.788	0.752	0.760	0.760	
006	0.378	0.385	0.393	0.377	0.379	0.379	
009	0.258	0.268	0.262	0.258	0.259	0.260	
015	0.231	0.233	0.234	0.229	0.230	0.230	
018	0.196	0.198	0.199	0.194	0.194	0.194	
110	0.152	0.153	0.154	0.153	0.154	0.154	

*: 1 Mg/Al = 2 及 Zn/Al = 2; 2 Mg/Al = 3 及 Zn/Al = 3 3 Mg/Al = 4 及 Zn/Al = 4

由表 1 可知所有样品均呈现层状结构的水滑石特有的衍射峰^[1,2],且衍射峰较强,表现出 良好的结晶度 根据 $a = 2 d_{10}^{[2]}$ 及 $c = 3 d_{003}^{[6]}$,计算了相应的晶胞参数如表 2。

```
表 2 Mg-Al-CO<sub>3</sub> 与 Zn-Al-CO<sub>3</sub> 水滑石的晶胞参数
```

Table 2 Cell parameters of Mg-Al-CO₃ and Zn-Al-CO₃ Hydrotalcite Samples

	Mg-Al-CO ₃ *		Zn-Al-CO ₃ *			
	1	2	3	1	2	3
ı∕nm	0.304	0.306	0.308	0.306	0.308	0.308
c∕nm	2.256	2.274	2.364	2.256	2.280	2.280

*: 1 Mg/Al = 2 及 Zn/Al = 2; 2 Mg/Al = 3 及 Zn/Al = 3 3 Mg/Al = 4 及 Zn/Al = 4

表 1 及表 2 数据说明,以相同方法和条件制备的 Mg-Al-CO₃ 与 Zn-Al-CO₃ 水滑石晶体结构 基本一致。只是随 Mg/Al 或 Zn/Al 比的增加,层间距略有增大,因为 Mg²⁺(或 Zn²⁺)的电荷数 比 Al³⁺少,随 Mg/Al 或 Zn/Al)比的增加,相邻六方晶胞中金属原子之间的静电排斥作用减 弱,因而 *a* 值也略有增大,这与文献^[7]报道的结果是一致的。晶胞参数 *c* 也随 Mg/Al 或 Zn/ Al)比的增加而增加,且比晶胞参数 *a* 变化明显,这是因为 *a* 主要取决于八面体中的阳离子大 小,而 *c* 则取决于八面体层的厚度、层间阴离子的大小及层与层之间的静电作用强弱。由表 2 还发现 Zn-Al-CO₃ 水滑石,Zn/Al 比为 2 和 3 的所得晶胞参数完全相同,这似乎说明 Zn/Al 比 变化引起的电荷密度变化,对层内及层与层之间静电作用强弱影响不大,这有待于进一步的结 构理论研究。

2.2 Mg-Al-CO₃ 与 Zn-Al-CO₃ 水滑石的热分解行为

Mg-Al-CO₃ 与 Zn-Al-CO₃ 水滑石样品的 TG-DTA 曲线见图 1 和图 2(仅列出了 Mg/Al = 2 及 Zn/Al = 2 的 Mg-Al-CO₃ 及 Zn-Al-CO₃ 水滑石), TG-DTA 分析结果列于表 3 和表 4。

图 1 为 Mg-Al-CO₃ 水滑石样品的热分析图,其 DTA 曲线存在两个独立的吸热峰,对应的 TG 曲线也有两个明显分开的失重台阶,这说明 Mg-Al-CO₃ 水滑石的热分解过程分两个过程。 200℃ 附近的吸热峰对应层间水的脱除,400℃ 附近的吸热峰对应层板氢氧基团及层间碳酸根 阴离子的脱除,并标志着层状结构破坏^[8]。比较第一个吸热峰的温度(表 3),发现随 Mg/Al 比 的增加,脱水峰温由 246℃降至 180℃,这正是因为 Mg/Al 比的增加,层板电荷密度降低,减弱 了层间水分子的氢键作用及水分子与层间碳酸根阴离子的相互作用,与上述 XRD 分析结果是 一致的。此外图 1 中 TG 曲线的第一个失重台阶,随 Mg/Al 比的增加,相应的失重量略有增加 (表 3),说明 Mg/Al 比越小,层间水越少,这可能是由于较多 Al³⁺的存在,使层间占据了较多的

表 3 Mg-Al-CO₃ 水滑石的 TG-DTA 结果

Table 3 TG-DTA Data of Mg-Al-CO₃ Hydrotalcite Samples

samples	the 1st weight loss	the 1st endo tem/°C	the 2nd endo tem/°C
Mg/Al = 2	13.9%	246	413
Mg/Al = 3	14.1%	225	412
Mg/Al = 4	14.7%	180	410

表 4 Zn-Al-CO3 水滑石的 TG-DTA 结果

Table 4 TG-DTA Data of Zn-Al-CO₃ Hydrotalcite Samples

 samples
 the endo tem/°C

 Zn/Al = 2
 204

 Zn/Al = 3
 204

 Zn/Al = 3
 205

Fig. 1 TG-DTA curves of the Mg-Al-CO₃ (Mg/Al = 2)hydrotalcite sample

Fig. 2 TG-DTA curves of the Zn-Al-CO₃ $\langle Zn/Al = 2 \rangle$ hydrotalcite samples

平衡阴离子。比较第二个吸热峰的温度(表 3),虽然随 Mg/Al 比的增加 层板电荷密度降低 峰 温略有降低 ,但变化不大 ,可能是层板电荷密度降低较小 ,因而 Mg/Al 比变化对层板羟基及层 间碳酸根阴离子之间的相互作用强弱影响不大 ,这有待于进一步的理论证实。

图 2 的 Zn-Al-CO₃ 水滑石 DTA 曲线只在 200℃ 附近有一个明显的吸热峰,对应的 TG 曲线 近似为一个失重台阶。这说明 Zn-Al-CO₃ 水滑石在热分解过程中,在 200℃ 附近层间水、层板氢 氧基团及层间碳酸根阴离子就几乎同时脱除,并失去其层状结构^[9]。文献^[9]中报道了 Zn-Al-CO₃ 水滑石在 300℃煅烧后,其 XRD 谱图已失去了水滑石层状结构的特征衍射峰,结构表现出 无定形,而文献^[8] 中报道的 Mg-Al-CO₃ 水滑石在 300℃ 煅烧后,其 XRD 谱图仍有水滑石的特 征衍射峰,说明层状结构没有完全破坏,这均与上述 TG-DTA 分析结果是吻合的。虽然文献^[10] 的实验结果 Zn-Al-CO₃ 水滑石的 DTA 曲线中存在两个吸热峰,但峰温接近,在 180 和 220℃左 右,且 TG 曲线也几乎是一个失重台阶,这仍然说明 Zn-Al-CO₃ 水滑石在热分解过程中层间水、 层板氢氧基团及层间碳酸根阴离子相继脱除,不像 Mg-Al-CO₃ 水滑石那样两个分解过程的峰 温相差较大,可见与我们的实验结果是一致的。因此 Zn-Al-CO₃ 水滑石热稳定性低于 Mg-Al-CO₃ 水滑石。 此外图 2 DTA 曲线中的吸热峰温 随 Zn/Al 比增加,分别为 204 °C、204 °C 和 205 °C (表 4), 由此可见对 Zn-Al-CO₃ 水滑石,尽管 Zn/Al 比增加,层板电荷密度降低,但层间水分子的氢键 作用、水分子与层间碳酸根阴离子的相互作用、层板羟基及层间碳酸根阴离子之间的相互作用 均未受到太大影响,这一方面由于 Zn-Al-CO₃ 水滑石中 Zn 离子半径 (0.074nm)较 Mg 离子半径 (0.065nm)¹²¹大,本身层板电荷密度就低于 Mg-Al-CO₃ 水滑石(参见 2.3),另一方面可能是 Zn/ Al 比增加,层板电荷密度降低较小。TG-DTA 结果与上述的 XRD 分析结果一致。

2.3 Mg-Al-CO₃ 与 Zn-Al-CO₃ 水滑石的结构稳定性分析

Mg/Al = 2及 Zn/Al = 2 的 Mg-Al-CO₃ 及 Zn-Al-CO₃ 水滑石在 4000 ~ 200 cm⁻¹ 范围的红外 吸收谱图如图 3 所示 相应的分析结果列于表 5。

表 5 Mg-Al-CO₃ 与 Zn-Al-CO₃ 水滑石的红外吸收峰^[11]

Table 5 IR Data of Mg-Al-CO₃ and Zn-Al-CO₃ Hydrotalcite Samples

	Mg-Al-CO ₃ wave number / cm $^{-1}$	Zn-Al-CO3 wave number/cm-
H ₂ O stretch	3446.858	3457.605
strong H-bonded OH	3069.873	2922. 580
H ₂ O deformation	1645.459	1627.457
symmetrical carbonate stretch	1358.472	1354.454
carbonate stretch	944.488	839. 194
M (II) -O-Al stretch	788.859	770.014
M (II) -OH-Al bend	678.171	614.215

图 3 小消口件 m 的 IR 宿图

Fig. 3 IR patterns of the hydrotalcite samples

由图 3 及表 5 分析结果可以看出,尽管层间碳酸根阴离子的对称性相当,但 Mg-Al-CO₃ 水 滑石层板氢氧基团的伸缩振动、晶格 M (II) -O-Al 伸缩及 M (II) -OH-Al 弯曲振动频率,均高于 Zn-Al-CO₃ 水滑石。这就说明 Mg-Al-CO₃ 水滑石相应的基团比 Zn-Al-CO₃ 水滑石相应的基团需 要在较高的能量下才能产生振动吸收峰。此外 Mg-Al-CO₃ 水滑石层间碳酸根阴离子的伸缩振 动频率也高于 Zn-Al-CO₃ 水滑石,这也说明 Mg-Al-CO₃ 水滑石层间碳酸根阴离子与层板之间的 作用力强于 Zn-Al-CO₃ 水滑石,因此 IR 谱图分析进一步证实了 Mg-Al-CO₃ 水滑石结构稳定性 优于 Zn-Al-CO₃ 水滑石。也正是因为 Mg-Al-CO₃ 水滑石层板氢氧基团的结合力比 Zn-Al-CO₃ 水 滑石的强,文献^[12]只得到了层板修饰的 Zn-Al-CO₃ 水滑石的层状化合物,而没有得到层板修饰 的 Mg-Al-CO₃ 水滑石的层状化合物。 水滑石结构如图 4 所示, 层间 CO_3^{2-} 和 H₂O 与 层 板 通 过 氢 键 以 OH-CO₃-OH 或 OH-H₂O-CO₃-OH^[2]方式连接, 根据初步的量 子化学计算(采用有效核势能近似从头算方 法,在 HF/3-21G 水平下计算了层板中两个 八面体的成键状况及各原子的电荷密度), 结果表明, Mg/Al 两八面体中, 羟基氢的电 荷密度为 0.361, 而 Zn/Al 两八面体中羟基 氢的电荷密度为 0.352, 因此层间 CO_3^{2-} 或 H₂O 中的氧与 Mg-Al-CO₃ 水滑石层板羟基

形成的氢键强于 Zn-Al-CO₃ 水滑石, 此外 Mg-Al-CO₃ 水滑石层板中 Mg 和 Al 的电荷密度分别为 0.740、1.412, 层板 O-H 键的重叠布居为 0.245, 而 Zn-Al-CO₃ 水滑石层板中 Zn 和 Al 的电荷 密度分别为 0.666、1.426, 层板 O-H 键的重叠布居为 0.230, 可见 Mg-Al-CO₃ 水滑石层板与层 间碳酸根阴离子之间的静电作用强于 Zn-Al-CO₃ 水滑石, 同时还说明 Mg-Al-CO₃ 水滑石层板 O-H 键强于 Zn-Al-CO₃ 水滑石, 因此从理论上支持了上述实验结论。

3 结 论

① Mg-Al-CO₃ 与 Zn-Al-CO₃ 水滑石晶体结构相似,但两者结构热稳定性存在显著差异;

②)由 TG-DTA 分析可知, Mg-Al-CO₃ 水滑石在热分解过程中,首先脱去层间水,然后再脱去层板氢氧基团及层间碳酸根阴离子,两个过程是分开进行的;而 Zn-Al-CO₃ 水滑石则层间水、层板氢氧基团及层间碳酸根阴离子几乎同时脱除;

(3)理论研究表明 Mg-Al-CO₃ 水滑石层板电荷密度高于 Zn-Al-CO₃ 水滑石,形成的 OH-CO₃-OH 或 OH-H₂O-CO₃-OH Mg-Al-CO₃ 水滑石均强于 Zn-Al-CO₃ 水滑石,因此 Mg-Al-CO₃ 水滑石结构热稳定性优于 Zn-Al-CO₃ 水滑石。

- [1] DU Yi-Bo(杜以波), Evans D. G., DUAN Xue(段 雪) et al Ranliao Huaxue Xuebao(Journal of Fuel Chemistry and Technology), **1997**, **25**, 449.
- [2] Cavani F., Trifiro F., Vaccari A. Catal. Today, 1991, 11, 173.
- [3] Kottapalli K. R. J. Catal, 1998, 173, 115.
- [4] SU Yan-Lei(苏延磊), HOU Wan-Guo(侯万国) et al Gaodeng Xuexiao Huaxue Xuebao(Chemical Journal of Chinese Universities), 1999, 20, 1012.
- [5] DUAN Xue(段 雪), JIAO Qing-Ze(矫庆泽), LI Lei(李 蕾) CN99119385.7.
- [6] Constantino V. R. L., Pinnavaia T. J. Inorg. Chem., 1995, 34, 883.
- [7] Brindley G. W., Kikkawa S. Am. Miner., 1979, 64, 836.
- [8] Fernando Rey, Vicente Fornes J. Chem. Soc., Faraday Trans., 1992, 88(15), 2233.
- [9] Narita E., Kaviratna P. Chem. Lett., 1991, 805.
- [10] Tu Mai, Shen Jian-Yi, Chen Yi J. Therm. Anal., 1999, 58, 441.
- [11] Maria J. Hernandez-Moreno, Maria A. Ulibarri Phys. Chem. Miner., 1985, 12, 34.

[12] Hideyuki Tagaya, Sumikazu Ogata J. Mater. Chem., 1996, 6, 1235.

Study of the Differences of Thermal Stability of Mg-Al-CO₃ and Zn-Al-CO₃ Hydrotalcite

LI Lei ZHANG Chun-Ying JIAO Qing-Ze DUAN Xue

(Key Lab of Science and Technology of Controllable Chemical Reactions, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029)

The structures of Mg-Al-CO₃ and Zn-Al-CO₃ hydrotalcites have been studied by means of XRD, IR and TG-DTA. Although both have the same crystal structures, their thermal stabilities are quite different. During the thermal decomposition process, Mg-Al-CO₃ hydrotalcite exhibits two steps-desorption of interlayer water occurs at 200°C, followed by dehydroxylation of the brucite-like layers and loss of carbonate at 400°C, Zn-Al-CO₃ hydrotalcite decomposes in one step-the desorption of interlayer water, structural water and carbon dioxide occurred at the same time at 200°C. The results of a theoretical study indicate that the bond strengths of OH-CO₃-OH and OH-H₂O-CO₃-OH in Mg-Al-CO₃ hydrotalcite are stronger than those in Zn-Al-CO₃ hydrotalcite. It has been shown that the thermal stability of Mg-Al-CO₃ hydrotalcite is higher than that of Zn-Al-CO₃ hydrotalcite.

Keywords: Mg-Al-CO₃ hydrotalcite Zn-Al-CO₃ hydrotalcite thermal stability difference