Raman 光谱研究铜锌超氧化物歧化酶 及其金属取代衍生物的二级结构

汤银燕 王志林 郁 清 耿金龙 罗勤慧* (南京大学配位化学研究所,南京 210093)

本文测定了铜锌超氧化物歧化酶(Cu₂Zn₂SOD)及其金属取代衍生物 Cu₂Ni₂SOD 的 Raman 光谱,对图谱进行了归属,并定量测定了两种 SOD 的二级结构,同时对结构与活性的关系进行了讨论。

关键词: 超氧化物歧化酶 Raman 光谱 二级结构

分类号: 0614.24

铜锌超氧化物歧化酶广泛存在于多种有机体中,其主要功能之一是催化超氧自由基发生 歧化反应生成过氧化氢和氧气^[1],因而它可清除机体内的超氧自由基。SOD 的功能与其结构有 着极其紧密的关系,因此,对其结构尤其是二级结构的研究已引起人们的广泛兴趣^[2-4]。常用 于测定蛋白二级结构的方法有 X-射线晶体结构分析法^[5],多维核磁共振法^[6,7],圆二色谱^[8,9], 红外光谱^[10]等。Raman 光谱也是测定蛋白结构的一种有力手段^[11,12],Spiro T. G. 工作小组使用 Raman 光谱对多种蛋白进行了广泛而深入的研究^[13-15]。1985 年 Lepork J. R. 曾对从 yeast 中分 离的 Cu₂Zn₂SOD 的 Raman 光谱进行了归属^[16],但用 Raman 光谱定量测定 Cu₂Zn₂SOD 及其金属 取代衍生物的二级结构至今还未见报导。本文测定了 Cu₂Zn₂SOD 及其金属取代衍生物 Cu₂Ni₂SOD 的 Raman 光谱。同时通过 Cu₂Zn₂SOD 水溶液及重水溶液冻干粉末的 Raman 谱图定 量计算了它的二级结构含量,其结果与 X-射线晶体结构分析法^[4]得出的结论十分吻合,继而 推广到其金属衍生物 Cu₂Ni₂SOD,将所得的结果与 Cu₂Zn₂SOD 进行了比较,并对结构与活性的 关系进行了讨论。

1 实验部分

1.1 Cu₂Zn₂SOD 及其衍生物的制备

• mol⁻¹。电感耦合等离子发射光谱测得铜锌含量分别为 0.38% 和 0.39%,黄嘌呤氧化酶法测得其活性为 6000 单位・mg⁻¹,其 EPR 和 UV 光谱与文献^[17]一致。Cu₂Ni₂SOD 按文献^[18]方法获得,Cu,Ni 含量分别为 0.370% 和 0.352%,其电子光谱与文献^[18]值基本一致。

將 SOD 分别溶于 20mmol・L⁻¹的 K₂HPO₄-KH₂PO₄(pH: 7.0) 和 20mmol・L⁻¹的 K₂DPO₄-KD₂PO₄(pD: 7.0)的缓冲溶液中, SOD 的浓度为 20~30mg・mL⁻¹, 新配制的溶液在 4℃的环境中放置 6~8小时后直至 H/D 交换基本平衡后, 冻干成粉末。

1.2 Raman 光谱的测定

收稿日期:2000-11-08。收修改稿日期:2000-12-25。 国家自然科学基金资助项目(No. 29831010)。

*通讯联系人。

第一作者:汤银燕,女,24岁,硕士研究生;研究方向:生物无机化学。

所有 Raman 谱图均在(25℃)用 RFS100 FT-Raman 光谱仪以 80mW 的功率测定, Raman 谱 图中两个最低点间的连线为基线(溶剂分子振动峰除外)测得峰高, 计算其相对强度。

2 结果与讨论

2.1 Raman 谱图的定性分析

Cu₂Zn₂SOD 及其金属取代衍生物 Cu₂Ni₂SOD 的粉末 Raman 谱图见图 1(a, b),由图可见,从 牛血中分离的 Cu₂Zn₂SOD 的 Raman 谱图与前人结果十分相似^[16],其归属与前人结果比较列于 表 1。

表 1 Raman 谱图峰的归属

Table 1 Assignment of the Raman Bands of Cu₂Zn₂SOD and its Derivative Cu₂Ni₂SOD (25°C, Laser Power: 80mW)

	band		frequency / cm ⁻¹	
assignment	Cu ₂ Zn ₂ SOD ^[16]	Cu ₂ Zn ₂ SOD	Cu ₂ Ni ₂ SOD	
			932.0	
C-C stretch	961	958.1	961.9	
phe ring mode	1005	1002.4(s)	1002.9(s)	
phe	1031	1031.0(s)	1029.5(s)	
C-C stretch (trans)	1063			
C-C stretch	1071		1074.8(m)	
C-C stretch	1096	1096.0(w)	1094.0(w)	
C-C stretch (trans)	1126	1127.0(m)	1133.3(m)	
phe	1172	1175.0(m)	1168. 0(w)	
amide III	1246	1247.0(m)	1240.0(m)	
amide III (a)	1265	1277.0(m)	1267.0(m)	
			1280. 3(m)	
amide	1286	1292.1(w)	1293.0(w)	
C-H ₂ twist	1317	1314.2(m)	1315.0(m)	
C-H ₂ twist	1341	1339.1(m)	1348.0(w)	
asp, glu $\nu(COO^-)C-H_2$, C-H ₃ bend	1402	1397.1(m)	1404.8(m)	
C-H ₂ , C-H ₃ bend	1451	1448.8(s)	1449.8(s)	
amide I	1670	1669.6(s)	1671.0(s)	

表 2 Raman 谱图特征峰对应的蛋白二级结构

Table 2 Raman Bands Assigned to the Secondary Structure of the Proteins,

the Conditions are the Same as in Table 1

		frequency / cm ⁻¹	
enzymes	a-helix	β -structure	random coil
Cu ₂ Zn ₂ SOD	1277.0(m)	1669.6(s)	1669.6(s)
		1292.1(w)	1257.1(m)
Cu ₂ Ni ₂ SOD	1651.7(m)	1664.8(s)	1664.8(s)
		1670.5(s)	1670.5(s)
		1230. 0(m)	1239.4(m)
		1292.2(w)	

根据表 1 数据,本工作中 Cu₂Zn₂SOD Raman 谱峰的强度、位置与文献^[16]相近。在生物大分子中,酰胺 I和酰胺 III 的振动频率及相对强度常用来标识蛋白的二级结构^[12, 16, 19]。文献^[12] 指出,在具有 α- 螺旋结构的蛋白 Raman 谱图上,其酰胺 I 的峰位于 1655cm⁻¹,酰胺 III 的峰位于

Raman shift / cm⁻¹

图 1 水溶液冻干粉末的 Raman 图谱

Fig. 1 Raman spectra of the proteins obtained from water solution, 25°C, laser power: 80mW a: Cu₂Zn₂SOD, b: Cu₂Ni₂SOD

1265~1300cm⁻¹,均为中等强度的峰;而 β-结构的蛋白,酰胺 I的峰向短波方向移动至 1665cm⁻¹ 附近,酰胺 III 则分为两组,一组为 1229~1235cm⁻¹ 的强峰,另一组为 1289~ 1295cm⁻¹ 的弱峰;对无序结构的蛋白而言,酰胺 I的峰位于 1665cm⁻¹ 附近,与 β-结构情况相 似,酰胺 III 则在更高频率 1243~1253cm⁻¹ 区间出现中等强度的峰。对 Cu₂Zn₂SOD 而言(图 1), 其 1669.6cm⁻¹ 的强峰可归属为 β-结构和无序结构的酰胺 I带;1292.1cm⁻¹ 的弱峰归为 β-结 构的酰胺 III 带,而 1257.5cm⁻¹ 中等强度的峰则是无序结构的酰胺 III 带。图中 1655 cm⁻¹ 附近 无峰出现,说明该结构中仅含较少的 α-螺旋结构^[12]。同理,我们对 Cu₂Ni₂SOD 的 Raman 特征 峰也进行了归属,两种 SOD 峰的归属见表 2。

Cu₂Ni₂SOD 的 Raman 谱中, 1650cm⁻¹ 及 1270cm⁻¹ 处出现中等强度的酰胺 I带预示和 Cu₂Zn₂SOD 具有不同的二级结构。

2.2 二级结构的定量计算

根据前人工作,蛋白的二级结构可由下列方程组求得[12],

$$C^{\text{protein}} I_{1240}^{\text{protein}} = f_{\alpha} I_{1240}^{\alpha} + f_{\beta} I_{1240}^{\beta} + f_{R} I_{1240}^{R}$$
(1)

$$C^{\text{protein}} I_{1632}^{\text{protein}} = f_{\alpha} I_{1632}^{\alpha} + f_{\beta} I_{1632}^{\beta} + f_{R} I_{1632}^{R}$$
(2)

$$C^{\text{protein}} I_{1660}^{\text{protein}} = f_{\alpha} I_{1660}^{\alpha} + f_{\beta} I_{1660}^{\beta} + f_{R} I_{1660}^{R}$$
(3)

$$1.0 = f_{\alpha} + f_{\beta} + f_{R} \qquad (4)$$

式中: f_{α} , f_{β} , f_{R} 分别代表蛋白中 α - 螺旋, β - 结构及无序结构的含量。 I_{ν}^{protein} 指蛋白在相应频率 ν 处以 1448cm⁻¹ 处的强度为标准得到的相对强度。因 1448cm⁻¹ 的 Raman 峰为 -CH₂ 的弯曲振动,其强度不以蛋白结构含量的变化及氘化与否而变化。 I_{ν}^{α} 指一个只含 α - 螺旋的蛋白在 ν 处的相对强度, I_{ν}^{β} , I_{β}^{R} 的意思以此类推。通常以经修正的聚 - L- 赖氨酸的一套数据为标准^[12]计算蛋白的二级结构。 I_{1240} 是蛋白水溶液 Raman 图谱的数据, 而 I_{1632} , I_{1660} 则为 D₂O 中所得到的

图 2 重水溶液冻干粉末的 Raman 光谱

数据。由于上述方程组同样适用固体^[11],故本文的 *L*^{protein} 分别是蛋白 SOD 在水溶液及 D₂O 溶 液中得到的冻干粉末的 Raman 图谱在 ν处的相对强度,(图 2(a, b)),从图可见,phe 及 amide Ⅲ的特征峰因氘化而发生了显著的位移,与文献^[13]一致。聚 - *L*- 赖氨酸的 *L*^α, *L*^β, *L*^R 和实验所 得的两种 SOD Raman 谱的相对强度列于表 3。

	H ₂ O ⁺	D ₂	0*
	1240cm ⁻¹	1632cm ⁻¹	1660cm - 1
Cu2Zn2SOD	0. 704	0. 324	0. 68
Cu2Ni2SOD	0. 70	0. 31	0. 77
I,ª	0.00	0.80	0. 55
I, ^β	1.20	0. 72	0.88
I,	0.60	0. 08	0. 78

表 3 聚 - L- 赖氨酸的 儿°、儿° 和 儿° 值以及两种 SOD 的相对峰强

Table 3 Revised Standard Relative Intensities $(I_{\nu}^{\alpha}, I_{\nu}^{\beta} \text{ and } I_{\nu}^{R})^{(12)}$ and those of SOD for Determination of Conformations Contents in Protein

(The spectral height at 1448cm⁻¹ is used as the standard, the conditions are the same as in Table 1)

*****: solid proteins obtained from water and D₂O solution respectively

结合表3数据和方程式1~4,可以计算出蛋白的二级结构含量,结果见表4。

由表 4 可知, Cu₂Zn₂SOD 含 3.0% 的 α - 螺旋, 45.1% 的 β - 结构及 51.9% 的无序结构, 与 X- 射线晶体结构分析^[4]和傅立叶红外光谱^[10]得出的结论十分相近, 说明 Raman 光谱适于测定 SOD 的二级结构, 与 Cu₂Zn₂SOD 比较, 可以看出 Cu₂Ni₂SOD 的 β - 结构含量相对减少而无序结 构含量增加。我们曾用光照法测定 Cu₂Ni₂SOD 的活性, 为 Cu₂Zn₂SOD 活性的 40%, 说明 SOD 的 活性随 β - 结构的减少, 无序结构的增加而降低, 这是由于在 SOD 中, 其每个亚基的活性中心 均是 β - 折叠相互环绕而形成的一个长而深的活性通道, 铜和锌位于其中, 锌起稳定结构的作 用,而铜则主要起催化作用^[4]。β-折叠结构的减少,可能改变了活性中心的结构,尤其是 Cu (II) 周围固有的配位环境,因而使酶活性降低。

表 4 Cu₂Zn₂SOD 及其衍生物 Cu₂Ni₂SOD 的蛋白二级结构含量

Table 4 Percentages of the Secondary Structure of Cu₂Zn₂SOD and its Derivative Cu₂Ni₂SOD(%)

enzymes	methods	a-helix	β -structure	random coil
Cu ₂ Zn ₂ SOD	this work	3. 0	45. 1	51.9
Cu ₂ Zn ₂ SOD	X-ray ^[4]	5	45	50
Cu ₂ Zn ₂ SOD	FTIR ^[10]	0	51	49
Cu2Ni2SOD	this work	8. 2	27.7	64. 1

参考文献

- [1] McCord J. M., Fridovich I. J. Biol. Chem., 1969, 244(22), 6409.
- [2] Dong A., Huang P., Caughey W. S. Arch. Biochem. Biophys., 1995, 320, 59.
- [3] Djinovic K., Gatti G., Coda A., Antolini L., Pelosi G., Desideri A., Falconi M., Marmocchi F., Rottilio G., Bolognesi M. J. Mol. Biol., 1992, 225, 791.
- [4] Tainer J. A., Getzoff E. D., Beem K. M., Richardson J. S., Richardson D. C. J. Mol. Bio., 1982, 60, 181.
- [5] Blundell T. L., Johnson L. N. Proteins Crystallography, Academic Press: New York, 1976.
- [6] Wührich K. NMR of Proteins and Nucleic Acids, John Wiley and Sons: New York, 1986.
- [7] Bax A. Ann. Rev. Biochem., 1989, 58, 223.
- [8] Yang J. T., Wu C. C., Martinez M. Methods Enzymol, 1986, 130, 208.
- [9] Hennessey J. P. et al Biochemistry, 1981, 20, 1085.
- [10]Sun W. Y., Fang J. L. et al Biopolymer, 1997, 42, 297.
- [11] Williams R. W. Methods Enzymol, 1986, 130, 208.
- [12] Lippert J. L., Tyminski D., Desmeules P. J. J. Am. Chem. Soc., 1976, 98, 7075.
- [13] Zhao X., Wang D., Spiro T. G. Inorg. Chem., 1998, 37(21), 5414.
- [14] Wang D., Zhao X., Vargek M., Spiro T. G. J. Am. Chem. Soc., 2000, 122, 2193.
- [15] Zhao X., Wang D., Spiro T. G. J. Am. Chem. Soc., 1998, 120, 8517.
- [16] Lepork J. R., Arnlod L. D., Toorrie B. H., Andrews B., Kruuv J. Arch. Biochem. And Biophys., 1985, 241, 243.
- [17] Qian W., Luo Q. H., Shen M. C. Bioelectrochem. Bioenerg., 1996, 39, 291.
- [18] Ming L. J., Valentine J. S. J. Am. Chem. Soc., 1987, 109, 4426.
- [19] Chen M. L., Lord R. C. J. Am. Chem. Soc., 1974, 96, 4732.

A Study on the Secondary Structures of Copper-Zinc Superoxide Dismutase and its Metal-Substituted Derivatives by Raman Spectroscopy

TANG Yin-Yan WANG Zhi-Lin YU Qing GENG Jin-Long LUO Qin-Hui*

(State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093)

The Raman spectra of copper-zinc superoxide dismutase (Cu₂Zn₂SOD) and its metal-substituted derivative Cu₂Ni₂SOD were measured and the major bands were assigned. The secondary structure contents of the proteins were obtained quantitatively. The results show that the Cu₂Zn₂SOD contains 3.0% α -helix, 45.1% β -structure and 51.9% random coil, which is in agreement with the results obtained by the X-ray crystal analysis and FTIR, and the Cu₂Ni₂SOD contains 8.2% α -helix, 27.2% β -structure and 64.1% random coil. It can be concluded that the activity of SOD decreases with the decreasing of β -structure and increasing of random coil.

Keywords: superoxide dismutae Raman spectroscopy secondary structure