[Co(2, 3-tri)(een)Cl][ZnCl₄]配合物的合成 及部分异构体的晶体结构测定

罗绪强¹ 张广义² 薛赛凤¹ 祝黔江² 陶 朱*,¹

(1贵州大学应用化学研究所,2贵州大学基础部,贵阳 550025)

周忠远 周向葛

(中国科学院成都有机化学研究所,成都 610041)

用过氧化物法合成、分离了 [Co(2, 3-tri) (een)Cl] [ZnCl₄] (2, 3-tri = N-(2- 胺基乙基)-1, 3- 丙二胺, een = N-乙基乙二胺) 体系中的部分异构体, 解析了其中两异构体的晶体结构。其中晶体(1)属单斜晶系, 空间群 $P2_1/n$, a = 0.8611(4) nm, b = 1.7906(9) nm, c = 1.3374(7) nm, $\beta = 107.627(8)^\circ$, V = 1.9653(16) nm³, $D_c = 1.713g \cdot$ cm⁻³, Z = 4, F(000) = 1032, $\mu(MoK\alpha) = 27.43$ cm⁻¹, R = 0.0725, $R_w = 0.1798$; 晶体(II)同属单斜晶系, 空间群 $P2_1/c$, a = 0.9799(3) nm, b = 2.6815(9) nm, c = 0.8107(3) nm, $\beta = 107.595(6)^\circ$, V = 2.0305(11) nm³, $D_c =$ 1.658g · cm⁻³, Z = 4, F(000) = 1032, $\mu(MoK\alpha) = 26.62$ cm⁻¹, R = 0.0660, $R_w = 0.1536$ 。两异构体中 Co³⁺为六配 位, 其差异仅表现在二元胺(een)中乙基的取向不同。晶胞中含 4 个配合物阳离子, 4 个[ZnCl₄]²⁻阴离子。在结 构单元中对映体的比例为 1:1。

关键词:	钴(III)配合物	几何经式异构体	晶体结构
分类号:	0614.81+2		

[CoN₅Cl]²⁺型配合物在建立碱催化水解理论以及五配位中间体模型,如广为人们接受的 三角双锥中间体,起到了重要作用^[1-4]。其中[Co(三元胺)(二元胺)Cl]²⁺型配合物是其一类具 有代表性的体系^[5-14]。在对[Co(三元胺)(二元胺)Cl]²⁺型配合物的研究中,选择[Co(不对称三 元胺)(不对称二元胺)Cl]²⁺型配合物作为研究碱催化水解机理对象极少报道。在配体中引入 不对称元素,可增加异构体的数目,以便对其水解、重排机理模型以及异构体间相互转化、旋光 性变化及中间体或过渡态进行更深入的研究。标题配合物体系即是基于此思想而设计和合成 的。由于配合物离子中不存在任何对称性元素,这不仅增加了可能的几何异构体的数目,同时 每一个几何异构体都有其相应的对映体。利用晶体结构测定,我们不仅可以指认是何种异构 体,且不经拆分即可观察到它的对映体。利用过氧化物的合成与分解法合成得到了标题配合物 体系的部分异构体、解析了其中两个经式异构体的晶体结构。

1 实验部分

1.1 异构体的合成与分离

采用过氧化配合物的合成与分解法^[11,12]。三元胺 (2,3-tri)用量为 3.40g(29.1mmol)、二元

收稿日期 2001-05-08。收修改稿日期: 2001-06-25。 贵州省省长基金资助项目。

*通讯联系人。

第一作者:罗绪强,男,25岁,助教;研究方向:配位化学。

胺(een)为2.56g(29.1mmol)。用强酸型阳离子交换树酯(Dowex 50Wx2-200~400目)进行柱层 析分离,淋洗液为2mol・L⁻¹ HCl。 收集得到五带配合物,按淋出先后分别记为:b1、b2、b3、b4、 b5。分别浓缩后用1.5mol・L⁻¹ H₂ZnCl₄(结晶剂)结晶,产物分布为:10%(b1),25%(b2),30% (b3 = 晶体(I)),10%(b4),25%(b5 = 晶体(II)),产率约为50%。

1.2 单晶的制备

将 0. 15g 上述柱层析分离得到的第三带配合物的四氯锌酸盐 ([Co(2, 3-tri) (een) Cl] [ZnCl₄]) 溶于 3mL 2mol·L⁻¹盐酸, 过滤除去不溶物后逐步滴加 1. 5mol·L⁻¹ H₂ZnCl₄(1. 5mol ZnCl₂ 溶于 250mL 浓盐酸, 并稀释至 1000mL)至晶体析出。用同法还可获得第五个色带的配合 物异构体的单晶。

1.3 晶体结构测定

分别选取尺寸大小分别近似为 0. 14mm × 0. 10mm × 0. 10mm (晶体(I)) 和 0. 14mm × 0. 10 mm × 0. 06mm (晶体(II)) 的红色棱柱形单晶用 Rigaku AFC7R 四圆衍射仪收集数据。石墨单色 化 Mo Ka 射线, $\lambda = 0.071073$ nm, 扫描方式分别为 $\omega/2\theta$ (分别为 3° < 2 θ < 56°和 4° < 2 θ < 56°), 扫描速度 $S = 16^{\circ} \cdot \min^{-1}(in \omega)$ 。收集到总的衍射点分别为 7428 和 7362, 其中独立衍射 点 4393 ($R_{int} = 0.1348$)和 4693 ($R_{int} = 0.0616$)。进行了线性校正、经验吸收校正 ($T_{max} = 0.7710$ 和 0. 8566, $T_{min} = 0.7000$ 和 0.7069)、 LP 校正及第二消光校正 (系数为 0.0084(5) 和 0.0025(4))。结构解析为直接方法(SHELXS86), 氢原子坐标由差值 Fourier 合成法得到。最后 一轮最小二乘精修分别用 4393 和 4634 个可观察点 ($I > 2.00\sigma(I)$), 分别修正 191 和 252 个 可变参数。最后偏离因子分别为 R = 0.0725和 0.0761, $R_w = 0.1798$ 和 0.1956。

2 结果与讨论

2.1 配合物的表征

标题配合物的 C、H、N 用 Carbo Erba 1106 型元素分析仪测定,实验值为 (CoCl(C₉H₂₇N₅) ZnCl₄): C, 21.41%; H, 5.45%; N, 14.09%; 计算值 (CoCl(C₉H₂₇N₅) ZnCl₄) 为: C, 21.32%; H, 5.37%; N, 13.82%。

标题配合物所选三元胺配体 2, 3-tri 与 Co³⁺形成一个五元环和一个六元环使得 [Co(2, 3-tri) (een) Cl]²⁺配合物无论是经式异构体还是面式异构体都不存在对称性元素, 从而使配合物中每一个碳原子所处的化学环境均不同, 其¹³C NMR 谱应显示出 9 个独立的共振峰, 其中晶体(I)及晶体(II)的化学位移分别为 12.481、26.673、37.852、41.972、42.415、43.895、48.695、50.976、54.776ppm 和 12.28、26.43、37.252、42.072、42.425、43.99、48.095、50.676、54.376ppm。¹H NMR 谱中各胺上质子的化学位移位于 4.073~5.656ppm 区间, 各亚甲基上质子的化学位移位于 1.418~2.633ppm 区间, 甲基质子的化学位移为 1.147ppm。但 1D NMR 谱通常不能归属这些碳峰或质子峰, 也不能识别它们是该体系中的哪一个异构体。

2.2 晶体结构描述

晶体(I)属单斜晶系,空间群 $P2_1/n$, a = 0.8611(4) nm, b = 1.7906(9) nm, c = 1.3374(7) nm, $\beta = 107.627(8)^\circ$, V = 1.9653(16) nm³, $D_c = 1.713$ g·cm⁻³, Z = 4, F(000) = 1032, μ (MoK α) = 27.43 cm⁻¹, R = 0.0725, $R_w = 0.1798$ 。晶体(II)同属单斜晶体,空间群 $P2_1/c$, a = 0.9799(3) nm, b = 2.6815(9) nm, c = 0.8107(3) nm, $\beta = 107.595(6)^\circ$, V = 2.0305(11) nm³, $D_c = 1.658$ g·cm⁻³, Z = 4, F(000) = 1032, μ (MoK α) = 26.62 cm⁻¹, R = 0.0761, $R_w = 0.1956$; 两异构体中

第 5 期 罗绪强等: [Co(2, 3-tri)(een)Cl][ZnCl4]配合物的合成及部分异构体的晶体结构测定 · 643 ·

 Co^{3+} 为六配位, 其差异仅表现在二元胺 (een) 中 N* (含取代基氮原子) 上乙基和氢原子的取向 不同。晶胞中均含 4 个配合物阳离子, 4 个 $[ZnCl_4]^{2-}$ 阴离子。对映体的比例为 1: 1, 整个化合物 是外消旋的。分子结构及其晶胞见图 1a 和图 1b 及 1c 和图 1d, 非氢原子坐标及热参数、键长及 键角分别列于表 1 和表 2。

表1 [Co(2, 3-tri)(een)Cl][ZnCl₄]异构体(I)和(II)的原子坐标和热参数

 Table 1
 Atomic Coordinates and Equivalent Isotropic Thermal Parameters (nm × 10³) for the Isomers (I) and (II) of [Co(2, 3-tri)(een)Cl][ZnCl₄]

atom	x	у	z	B(eq)	<i>x</i> *	y^*	z^*	$B^{*}(\mathrm{eq})$
Co	0.1640(1)	0.1998(1)	0.3348(1)	0.26(1)	0.8101(1)	0.1521(1)	0.7421(1)	0.26(1)
Zn	0.5901(1)	0.4107(1)	0.2270(1)	0.36(1)	1.2416(1)	0.1048(1)	1.3307(1)	0.38(1)
N(1)	0.0530(4)	0.1053(2)	0.3446(3)	0.47(1)	0.6718(3)	0.1098(1)	0.5757(4)	0.33(1)
N(2)	0.0007(4)	0.2483(2)	0.3919(3)	0.35(1)	0.9744(3)	0.1230(1)	0.6802(4)	0.28(1)
N(3)	0.2590(4)	0.2975(2)	0.3201(3)	0.43(1)	0.9555(3)	0.1952(1)	0.9031(4)	0.39(1)
N(4)	0.3157(4)	0.1862(2)	0.4740(3)	0.36(1)	0.8201(3)	0.1045(1)	0.9257(4)	0.43(1)
N(5)	0.3343(4)	0.1459(2)	0.2845(3)	0.44(1)	0.6537(3)	0.1852(1)	0.8180(4)	0.35(1)
C(1)	-0.0995(5)	0.1218(3)	0.3682(5)	0.56(2)	0.7072(4)	0.0582(2)	0.5349(6)	0.43(1)
C(2)	-0.0706(5)	0.1889(3)	0.4396(4)	0.51(1)	0.8454(4)	0.0558(1)	0.4901(6)	0.43(1)
C(3)	0.0386(6)	0.3143(3)	0.4561(4)	0.54(2)	0.9743(4)	0.704(1)	0.6369(5)	0.41(1)
C(4)	0.1065(6)	0.3775(3)	0.4095(4)	0.57(2)	1.1091(3)	0.1368(2)	0.8151(5)	0.37(1)
C(5)	0.2685(6)	0.3582(3)	0.3923(4)	0.54(2)	1.0959(4)	0.1907(2)	0.8653(6)	0.45(1)
C(6)	0.4781(5)	0.1650(3)	0.4698(4)	0.48(2)	0.7305(6)	0.1217(2)	1.0308(7)	0.94(1)
C(7)	0.4469(5)	0.1125(3)	0.3817(4)	0.47(2)	0.6313(5)	0.1560(2)	0.9569(6)	0.85(1)
C(8)	0.2923(7)	0.0960(3)	0.1962(5)	0.65(2)	0.5173(4)	0.1991(2)	0.6861(7)	0.69(2)
C(9)	0.4269(7)	0.0733(3)	0.1555(4)	0.64(2)	0.4151(5)	0.2292(2)	0.7463(7)	0.68(2)
Cl(1)	-0.0067(2)	0.2135(1)	0.1712(1)	0.55(1)	0.7899(1)	0.2104(1)	0.5337(1)	0.46(1)
Cl(2)	0.3239(1)	0.4285(1)	0.1347(1)	0.47(1)	1.3517(1)	0.0701(1)	1.5928(2)	0.39(1)
Cl(3)	0.7584(2)	0.4359(1)	0.1296(1)	0.53(1)	1.4077(1)	0.1302(1)	1.2078(2)	0.67(1)
Cl(4)	0.6130(1)	0.2848(1)	0.2641(1)	0.63(1)	1.0937(1)	0.0470(1)	1.1712(2)	0.52(1)
Cl(5)	0.6513(2)	0.4853(1)	0.3665(1)	0.75(1)	1.0956(1)	0.1713(1)	1.3468(2)	0.53(1)

* The isomer (II)

图 1a 晶体(I)的分子结构

Fig. 1a Perspective drawing of the crystals (I)

图 1b 晶体(I)的晶胞堆积图

Fig. 1b A general view of the unit cell of the crystals (I)

表 2 [Co(2, 3-tri)(een)Cl][ZnCl₄]异构体(I)和(II)的部分键长和键角

 Table 2
 Selected Bond Distances(nm) and Bond Angles(°) for the Isomers (I) and (II) of [Co(2, 3-tri)(een)Cl][ZnCl₄]

atom	atom	distance	distance*	atom	atom	atom	angle	angle*
Co	Cl(1)	0.22491(15)	0.22662(13)	Cl(1)	Co	N(1)	88.37(12)	89.98(9)
Co	N(1)	0.1967(4)	0.1960(3)	Cl(1)	Co	N(2)	89.78(11)	88.72(9)
Co	N(2)	0.1991(4)	0.1985(3)	Cl(1)	Co	N(3)	88.54(11)	88.43(10)
Co	N(3)	0.1967(4)	0.1985(3)	Cl(1)	Co	N(4)	178.21(12)	176.68(11)
Co	N(4)	0.1939(3)	0.1941(3)	Cl(1)	Co	N(5)	93.11(11)	91.20(10)
Co	N(5)	0.2032(4)	0.2021(3)	N(1)	Co	N(2)	86.30(16)	92.45(12)
				N(1)	Co	N(3)	175.76(14)	177.35(14)
				N(1)	Co	N(4)	91.62(16)	90.65(13)
				N(1)	Co	N(5)	91.60(17)	91.89(12)
				N(2)	Co	N(3)	90.78(16)	85.39(13)
				N(2)	Co	N(4)	92.01(15)	94.51(14)
				N(3)	Co	N(4)	91.56(15)	91.06(14)
				N(3)	Co	N(5)	91.46(17)	90.26(13)

N(4) Co N(5)

* The isomer (II)

图 1c 晶体(II)的分子结构

Fig. 1c Perspective drawing of the crystals (II)

85.10(15)

85.52(14)

Fig. 1d A general view of the unit cell of the crystals (II)

晶体结构表明两异构体均为钴的八面体五胺配合物。对于 [Co(三元胺)(不对称二元胺) Cl]²⁺型五胺配合物体系,我们已规定三元胺配体中仲胺上的氢相对于 Cl 处于邻位的配合物 为顺式(*syn-*),处于反位的为反式(*anti-*);同时定义了当二元胺配体中 N- 取代或氮邻位(碳) 取代的胺基与三元胺配体中的仲氮原子处于邻位的异构体为 *cis*(N*)构型,处于对位的异构 体为 *trans*(N*)构型^[12]。而对于[Co(不对称三元胺)(非对称二元胺)Cl]²⁺型五胺配合物体系, 由于二元胺配体上的取代基的取向关系,以上两条规定还不足以表明所有可能的几何异构 体。为此,我们又规定该取代基偏向于三元胺配体与配位中心离子 Co(III)形成的五元环的标记 为 m(mer-)或 f(fac-),偏向于六元环的标记为 m'(mer'-)或 f'(fac'-)。从晶体结构(图 1a 及 1c) 看出,两异构体均为经式异构体;两异构体中 Cl 与三元胺配体 (2, 3-tri)中仲胺上的氢均处于 邻位,两异构体同属顺式(*syn-*);二元胺配体(*een*)中 N-取代基(乙基)与三元胺配体中的仲氮 第 5 期 罗绪强等: [Co(2, 3-tri)(een)Cl][ZnCl4]配合物的合成及部分异构体的晶体结构测定 · 645 ·

原子均处于对位, 两异构体同属 $trans(N^*)$ 构型。因此, 两异构体的阳离子均可标记为 synmer- $trans(N^*)$ 。从图 1a 可看出, 二元胺配体(een)上的氮取代基(乙基)偏向于三元胺配体(2, 3-tri)与配位中心离子 Co(III)形成的五元环, 该异构体标记为 I; 对应于图 1c, 二元胺配体(een) 上的取代基(乙基)偏向于三元胺配体(2, 3-tri)与配位中心离子 Co(III)形成的六元环, 因此把该 异构体标记为 II。

从结构参数看, 两异构体 5 个 Co-N 键键长中, Co-N(5) 键键长均较大, 这可能是由于乙基 在空间可绕 N(5)-C(8) 轴自由旋转所造成。而其它类似配合物 (如 [Co(2, 3-tri) (amp) Cl]²⁺、 [Co(2, 3-tri) (ibn) Cl]²⁺)中 5 个 Co-N 键键长却基本一致^[13,14]。

最近我们的研究结果表明,对于同一 Co (III)配合物体系,各异构体键长总和无明显差异, 而键角变形性的总和与其反应性有关。从键角来看,中心离子的八面体骨架以及相联的各配 体原子在三维空间不同方向上有不同程度的变形。因此,我们称配合物中某一键角与相应标 准键角 (如正八面体结构中的 90°和 180°;标准 *sp*³ 杂化键角 109°28′等) 差值的绝对值为该键 角的变形性。表 3 列出了晶体(I)和晶体(II)部分键角的变形性及其加和。尽管两异构体相应键 角的变形性不尽相同,但其加和却基本一致,我们推测这两个异构体的反应性,如碱水解速 度,是相近的。相比之下后者的稳定性略低些,反应活性可能稍高。

表 3 [Co(2, 3-tri)(een)Cl][ZnCl₄] 异构体(I)和(II)部分键角的变形性

Table 3 Transformation of the Selected Bond Angles(°) for the Isomers (I) and (II)

of [Co(2, 3-tri)(een)Cl][ZnCl₄]

atom	atom	atom	transformation	transformation
Cl(1)	Co	N(1)	1.63	0.02
Cl(1)	Co	N(2)	0.22	1.28
Cl(1)	Co	N(3)	1.46	1.57
Cl(1)	Co	N(4)	1.79	3.32
Cl(1)	Co	N(5)	3.11	1.2
N(1)	Co	N(2)	3.70	2.45
N(1)	Co	N(3)	4.24	2.65
N(1)	Co	N(4)	1.62	0.65
N(1)	Co	N(5)	1.60	1.89
N(2)	Co	N(3)	0.78	4.61
N(2)	Co	N(4)	2.01	4.51
N(3)	Co	N(4)	1.56	1.06
N(3)	Co	N(5)	1.46	0.26
N(4)	Co	N(5)	4.90	4.48
Σ transfomation			30.08	29.95

* The isomer (II)

我们曾在制备 [Co(2, 3-tri) (ibn) Cl]²⁺的异构体单晶时发现, 该体系的一个单晶是旋光性的^[14]。由本文中的晶胞图可看出, 两异构体晶胞中均含 4 个配合物阳离子, 且互为对映体, 对映体比例为 1:1, 即两异构体均是外消旋化的。因此, 不能通过制备晶体来达到拆分对映体的目的。

参考文献

[1] Rotzinger F. P. Inorg. Chem., 1991, 30, 2763.

- [2] Comba P. C., Jackson W. G., Marty W., Stöeckli-Evans H., Zipper L. Helv. Chim. Acta, 1992, 75, 1130.
- [3] Comba P. C., Jackson W. G., Marty W., Zipper L. Helv. Chim. Acta, 1992, 75, 1172.
- [4] Jackson W. G., Spencer P. B., Walsh R. J. Inorg. Chim. Acta, 1999, 284, 37.
- [5] Gainsford, A. R., House D. A., Robinson W. T. Inorg. Chim. Acta, 1971, 5, 595.
- [6] House D. A. Coord. Chem. Rev., 1977, 23, 223.
- [7] Tinner U., Marty W. Helv. Chim. Acta, 1977, 60, 1629.
- [8] Tinner U., Marty W. Inorg. Chem., 1981, 20, 3750.
- [9] Jackson W. G., Walsh R. J. Inorg. Chem., 1991, 25, 4815.
- [10]TAO Zhu(陶 朱), Jackson W. G. Wuji Huaxue Xuebao (Chinese Journal of Inorganic Chemistry), 2000, 6(3), 485.
- [11]ZHU Qiang-Jiang(祝黔江), TAO Zhu(陶 朱), ZHANG Jiang-Xin(张建新), XU Yuan-Zhi(徐元植) Huaxue Xuebao(Acta Chimica Sinica), 2000, 58(11), 1434.
- [12]TAO Zhu(陶 朱), ZHU Qiang-Jiang(祝黔江), XU Yuan-Zhi(徐元植) Wuji Huaxue Xuebao(Chinese Journal of Inorganic Chemistry), 2000, 16(5), 733.
- [13]TAO Zhu(陶 朱), ZHU Qiang-Jiang(祝黔江), ZHENG Yue-Qing(郑岳青), XU Yuan-Zhi(徐元植) Wuji Huaxue Xuebao(Chinese Journal of Inorganic Chemistry), 2000, 16(4), 631.
- [14]ZHU Qiang-Jiang(祝黔江), TAO Zhu(陶 朱), XU Yuan-Zhi(徐元植) Wuji Huaxue Xuebao(Chinese Journal of Inorganic Chemistry), 2000, 16(6), 899.

Synthesis of the [Co(2, 3-tri)(een)Cl][ZnCl₄] and Crystal Structures of two Isomers

LUO Xu-Qiang¹ ZHANG Guang-Yi² XUE Sai-Feng¹ ZHU Qian-Jiang² TAO Zhu^{*,1} (¹Institution of Applied Chemistry, ²Department of Basic Courses Guizhou University, Guiyang 550025) ZHOU Zhong-Yuan ZHOU Xiang-Ge

(Chengdu Institute of Organic Chemistry Chinese Academy of Science, Chengdu 610041)

Some geometric isomers of a new [Co(2, 3-tri) (een) Cl] [ZnCl₄] (2, 3-tri = N-(3-Aminoethyl) -1, 3-propanediamine; een = N-ethylethylenediamine) system have been synthesised by decomposing per-oxide complex. The crystal structures of two isomers (I) and (II) have been determined by single crystal X-ray diffraction analysis. The only difference between the two isomers is the orientation of the substituted ethyl group in diamine ligand(een). The crystal (I) belongs to monoclinic space group $P2_1 / n$ with a = 0.8611(4) nm, b = 1.7906(9) nm, c = 1.3374(7) nm, $\beta = 107.627(8)^\circ$, V = 1.9653(16) nm³, $D_c = 1.713g \cdot \text{cm}^{-3}$, Z = 4, F(000) = 1032, $\mu(\text{Mo} K\alpha) = 27.43 \text{cm}^{-1}$, R = 0.0725, $R_w = 0.1798$; and the crystal (II) belongs to monoclinic space group $P2_1 / c$ with a = 0.9799(3) nm, b = 2.6815(9) nm, c = 0.8107(3) nm, $\beta = 107.595(6)^\circ$, V = 2.0305(11) nm³, $D_c = 1.658g \cdot \text{cm}^{-3}$, Z = 4, F(000) = 1032, $\mu(\text{Mo} K\alpha) = 26.62 \text{cm}^{-1}$, R = 0.0761, $R_w = 0.1956$. Both compounds are racemoids.

Keywords: cobalt (III) complexes geometric isomers crystal structures