4,4'- 联吡啶锌(II)配合物的合成及其晶体结构

梁福沛 陈自卢 胡瑞祥 梁 宏*

(广西师范大学化学系,桂林 541004)

周朝晖

(福建省厦门大学化学系,厦门 361005)

郁开北

(中国科学院成都分院分析测试中心,成都 610041)

苦味酸锌与 4, 4'- 联吡啶反应, 得到一种新型配合物 $[Zn(4, 4'-bpy)_2(H_2O)_2]$ (pic)₂·2H₂O(4, 4'-bpy: 4, 4'-联吡啶, pic⁻: 苦味酸根), 并用元素分析、红外光谱等进行表征。 X- 射线单晶衍射结果表明, 晶体属单斜晶系, 空间群 *Cc*, 晶胞参数: *a* = 1.4390(2), *b* = 1.1418(1), *c* = 2.2908(3) nm, β = 95.08(1)°, *V* = 3.749(1) nm³, Z = 4; 该配合物由 4, 4'- 联吡啶与金属配位形成多孔的二维网, 二维网再由未配位的水分子及苦味酸根离子通过 氢键作用沿 *a* 轴方向堆积得三维网状结构, 且未配位的水分子、苦味酸根离子被包合在网络之中, 展示出一定 的包合现象。

关键词:	晶体结构	4,4′- 联吡啶	苦味酸根	包合现象
分类号:	0614.24+1	0626.32		

近年来,随着超分子化学的迅速发展,一些具有分子大小空穴或管道的新型沸石型功能材料应运而生。特别是一些以芳香族配体与金属配位而得的各种空穴因其形状、大小、功能的可设计性强而引起了人们的广泛关注。4,4′-联吡啶,是一种线状双基刚性配体,无支链,空间位阻少,有较好的桥联作用。它与金属离子在自组装过程中能形成各种一维^[1-5]、二维^[6-8]及三维^[9-12]空间结构的配合物,这些不同结构的配合物大多有较大的孔洞、空穴或管道,能笼合一些体积大的有机分子作为客体分子^[7],表现出特殊的包合现象。4,4′-bpy 配合物的这种特殊的包合现象可用于物质的分离提纯,化学反应的催化及离子间的交换^[7,13]。

我们曾报道以大体积、弱配位的苦味酸根离子做电荷平衡离子,合成了具有一维、二维网状结构的配合物^[14]。本文报道在不同反应条件下苦味酸锌与4,4′-联吡啶反应得到的另一种配合物。

1 实验部分

1.1 实验材料与仪器

4,4'- 联吡啶、氧化锌为化学纯试剂,其它所有试剂为分析纯,用前未经处理。苦味酸锌是 将氧化锌与苦味酸反应而得,元素分析表明其组成为 Zn(pic)₂ · 8H₂O。

收稿日期 2001-04-12。收修改稿日期: 2001-06-18。

国家自然科学基金资助项目 (No. 29761002), 广西自然科学基金资助项目。

* 通讯联系人。E-mail: hurx@ mailbox. gxnu. edu. cn or bioinorganicchem@ 263. net

第一作者:梁福沛,男,39岁,教授;研究方向:配位化学。

· 700 ·

EL-CHNS-O 元素分析仪, Nicolet 5DXB FT-IR 红外分光光度计(KBr 压片)。

1.2 配合物的合成

Zn(pic)₂ · 8H₂O(0. 6mmol, 0. 3999g)溶于乙腈 - 水溶液(1:1 v/v, 10mL),恒温于 50℃,滴入 4,4'-bpy(1. 2mmol, 0. 1878g)的乙腈 - 水(1:1 v/v, 10mL)溶液,搅拌 20h,有黄色固体生成,过滤。滤液室温放置一个月,得黄色块状单晶。元素分析测定值:C 42. 59, H 3. 14, N 15. 64%; 计算值[Zn(4,4'-bpy)₂(H₂O)₂](pic)₂ · 2H₂O:C 42. 42, H 3. 12, N 15. 46%。

1.3 配合物的测定及结构解析

选取 0. 12mm × 0. 15mm × 0. 18mm 晶体封于毛细管中, 置于 Enraf-Nonius CAD4 单晶衍射 仪上,使用单色化的 Mo Ka 射线和 ω -2 θ 扫描方式,在 1° < θ < 26°范围内收集衍射点,衍射点 强度经 Lp 校正,晶体结构采用直接法解出,结构分析程序为 MolEN 程序,全部原子经最小二 乘法各向异性修正。配合物的最终编离因子为 R = 0.0872, $R_w = 0.0851$, $w^{-1} = [\sigma | F_0|^2 + 0.0004 | F_0|^2 + 1]$ 。相关数据收集及结晶学数据列于表 1。

表1 配合物的实验及晶体学数据

Table 1 Crystallographic and Experimental Data for Complex

empirical formula	$C_{32}H_{28}N_{10}O_{18}Zn \\$	$D_{\rm c}/({ m g}\cdot{ m cm}^{-3})$	1.605
Mr	906.01	T/K	297
crystal system	monoclinic	λ (Mo K α) / nm	0.071073
space group	Cc	μ/mm^{-1}	0.7588
a/nm	1.4390	F(000)	1856
b∕nm	1.1418(1)	crystal size/mm	0. 12 × 0. 15 × 0. 18
c/nm	2.2908(3)	No. of reflection measured	4036
β∕(°)	95.08(1)	No. of observed data	2584
V∕ nm ³	3.749(1)	criterion for observed data	$I > 1 \sigma(I)$
Z	4	largest diff. peak and hole / (e \cdot nm $^{-3})$	669 and -178

2 结果与讨论

2.1 配合物的合成与组成

标题配合物与我们前面报道的[Zn(4,4'-bpy)₂ · (H₂O)₂](pic)₂ · (4,4'-bpy) · H₂O^[14]在合 成条件上差别仅仅是后者在室温下获得,而该配合物是在加热条件下得到,合成条件的不同使 两者在组成上有所差别。从结构骨架看两者相似,但是其氢键却不一样,这或许能说明生物体 一些蛋白在温度改变时其活性也改变的原因。配合物能溶于乙腈、丙酮、乙醇等有机溶剂,在水 中的溶解度却较小。而所见报道的具有类似配位单元的镉配合物^[12,15]却不溶于普通的有机溶 剂。标题配合物在 3228,3094,1611,1563,1484,1326,1157,1066 和 812cm⁻¹ 有吸收峰,与[Zn (4,4'-bpy)₂ · H₂O)₂](pic)₂ · (4,4'-bpy) · H₂O 的吸收峰(3588,3335,3083,1635,1609,1556, 1489,1330,1270,1157,1071,812cm⁻¹)^[14]有所差别。

2.2 晶体结构

配合物的分子结构见图 1, 一些重要的键长、键角列于表 2, 非氢原子坐标及其温度因子列 于表 3。在配合物[Zn(4, 4'-bpy)₂(H₂O)₂](pic)₂ · 2H₂O 中, 四个 4, 4'-bpy 的氮原子、两个水的氧 原子分别与锌离子配位 (Zn-N: 0. 2150(2) ~ 0. 222(2) nm, Zn-O: 0. 2083(9) ~ 0. 219(1) nm), 形 成准正八面体配位环境。其键长与已报道的类似结构键^[14, 16]接近。在晶胞的(100)面内, Zn²⁺与 4, 4'-bpy 分子通过配位作用形成无限二维网状结构 (图 2), 在二维网中, 每四个锌离子与四个

表 2 配合物的主要键长和键角

 Table 2
 Selected Bond Lengths(nm) and Angles(°) for Complex

Zn(1)-O(w1)	0.2083(9)	Zn(1)-N(2)	0.2164(9)	Zn(1)-O(w2)	0.219(1)
Zn(1)-N(3)	0.215(2)	Zn(1)-N(1)	0.2172(9)	Zn(1)-N(4)	0.222(2)
O(w1)-Zn(1)-O(w2)	176.9(4)	O(w2)-Zn(1)-N(4)	87.2(4)	O(w1)-Zn(1)-N(1)	91.7(7)
N(1)-Zn(1)-N(2)	174.8(8)	O(w1)-Zn(1)-N(2)	93.5(5)	N(1)-Zn(1)-N(3)	88.0(7)
O(w1)-Zn(1)-N(3)	91.7(4)	N(1)- $Zn(1)$ - $N(4)$	91.8(7)	O(w1)-Zn(1)-N(4)	90.3(4)
N(2)-Zn(1)-N(3)	92.4(6)	O(w2)-Zn(1)-N(1)	86.5(7)	N(2)-Zn(1)-N(4)	87.7(6)
O(w2)-Zn(1)-N(2)	88.3(5)	N(3)-Zn(1)-N(4)	178.0(5)	O(w2)-Zn(1)-N(3)	90.7(4)

表 3 配合物的非氢原子坐标和等效热参数

Table 3 Positional and Thermal Parameters for Complex

atom	x	у	z	B(A2)	atom	x	у	z	B(A2)
Zn(1)	0.199	0.0050(1)	0.976	2.52(2)	C(3)	0.345(2)	-0.579(2)	0.7395(9)	6.1(5)
Ow(1)	0.3446(6)	0.0045(9)	0.9803(4)	3.1(2)	C(4)	0.312(1)	-0.448(1)	0.7136(6)	2.8(2)
$O_W(2)$	0.0472(7)	-0.000(1)	0.9763(4)	3.5(2)	C(5)	0.330(1)	-0.340(1)	0.7380(7)	3.7(3)
0(3)	0.4649(8)	-0.425(1)	0.8714(5)	4.3(2)	C(6)	0.376(1)	-0.348(1)	0.7853(7)	3.8(3)
0(4)	0.417(1)	-0.746(2)	0.7943(7)	8.4(4)	C(7)	-0.019(1)	-0.553(1)	0.6269(6)	2.4(2)
0(5)	0.415(1)	-0.656(1)	0.8847(7)	7.6(4)	C(8)	0.005(1)	-0.456(1)	0.6514(7)	3.8(3)
0(6)	0.407(1)	-0.203(1)	0.8648(6)	6.7(3)	C(9)	0.049(1)	-0.442(1)	0.7085(7)	3.7(3)
0(7)	0.371(2)	-0.147(2)	0.774(1)	12.7(7)	C(10)	0.078(1)	-0.515(2)	0.7393(7)	4.2(3)
0(8)	0.225(1)	-0.366(1)	0.6360(6)	6.7(3)	C(11)	0.066(1)	-0.633(2)	0.7202(8)	4.6(4)
0(9)	0.243(1)	-0558(1)	0.6365(7)	7.5(4)	C(12)	0.014(1)	-0.666(1)	0.6602(7)	3.8(3)
0(10)	-0.055(1)	-0.572(1)	0.5746(6)	5.7(3)	C(13)	0.277(1)	-0.249(1)	0.9696(6)	2.4(2)
0(11)	-0.045(1)	-0.342(1)	0.5751(7)	7.0(4)	C(14)	0.2770(9)	-0.369(1)	0.9664(5)	2.1(2)
0(12)	-0.046(1)	-0.256(1)	0.6491(7)	7.3(4)	C(15)	0.027(1)	-0.4300(9)	0.9763(9)	2.2(2)
0(13)	0.143(1)	-0.405(2)	0.8146(7)	8.1(4)	C(16)	0.124(1)	-0.368(1)	0.9972(7)	4.0(3)
0(14)	0.162(1)	-0.591(1)	0.8191(7)	7.9(4)	C(17)	0.130.(1)	-0.247(1)	0.9972(6)	3.3(3)
0(15)	0.013(1)	-0.860(1)	0.6752(6)	5.7(3)	C(18)	0.2710(8)	-0.744(1)	0.9993(5)	1.6(2)
0(16)	-0.059(2)	-0.795(2)	0.603(1)	12.9(7)	C(19)	0.287(1)	-0.621(1)	0.9950(7)	3.7(3)
O(w3)	0.4425(9)	0.036(1)	0.8816(5)	4.8(3)	C(20)	0.201(2)	-0.559(1)	0.973(1)	3.3(2)
O(w4)	0.9490(9)	0.060(1)	0.0670(6)	5.4(3)	C(21)	0.1249(9)	-0.623(1)	0.9546(6)	2.4(2)
N(1)	0.194(2)	-0.1851(8)	0.976(1)	2.9(2)	C(22)	0.118(1)	-0.743(2)	0.9599(8)	5.4(4)
N(2)	0.191(1)	-0.8058(7)	0.9772(8)	2.4(2)	C(23)	0.141(1)	-0.076(1)	0.8474(7)	3.3(3)
N(3)	0.1881(8)	-0.001(1)	0.8821(4)	2.9(2)	C(24)	0.144(1)	-0.079(1)	0.7875(6)	3.1(3)
N(4)	0.2056(8)	-0.010(1)	0.5736(4)	2.7(2)	C(25)	0.1961(8)	-0.004(1)	0.7579(5)	2.2(2)
N(5)	0.413(1)	-0.650(2)	0.8285(8)	6.3(4)	C(26)	0.238(1)	0.093(2)	0.7898(8)	4.9(4)
N(6)	0.390(2)	-0.218(2)	0.812(1)	10.2(7)	C(27)	0.230(1)	0.097(2)	0.8537(9)	5.4(4)
N(7)	0.256(1)	-0.466(1)	0.6552(6)	4.9(3)	C(28)	0.1739(8)	-0.094(1)	0.6012(5)	1.7(2)
N(8)	-0.027(1)	-0.334(1)	0.6245(7)	5.4(3)	C(29)	0.1731(9)	-0.100(1)	0.6600(5)	1.9(2)
N(9)	0.132(1)	-0.501(2)	0.7972(9)	8.1(5)	C(30)	0.240(1)	-0.008(2)	0.6936(6)	3.7(3)
N(10)	-0.0022(9)	-0.774(1)	0.6427(5)	3.4(2)	C(31)	0.226(1)	0.098(1)	0.6646(7)	3.8(3)
C(1)	0.410(2)	-0.427(2)	0.8241(9)	6.1(5)	C(32)	0.228(1)	0.092(1)	0.6036(6)	2.5(2)
C(2)	0.393(1)	-0.554(2)	0.7943(7)	4.3(3)					

4,4'-bpy 分子围成一个畸变的四方空穴(N(1)-Zn(1)-N(3):88.0(7)°,N(1)-Zn(1)-N(4):91.8 (7)°,N(2)-Zn(1)-N(3):92.4(6)°,N(2)-Zn(1)-N(4):87.7(6)°);空穴大小为1.1418(2)× 1.1418(2)nm 与前面报道的非常接近^[14],说明两者结构骨架基本一至。同时该结构与镉的类 似配合物[Cd(4,4'-bpy)₂(H₂O)₂](ClO₄)₂·2H₂O 很相似^[15]。苦味酸根离子没有参与配位,随未

图 3 配合物的晶胞堆积图

Fig. 3 Molecular packing of complex

配位水分子一起与配位水分子形成分子间氢键(O(w1)...O(10): 0.261(2)nm, O(w2)...O(3): 0.272(1)nm, O(w1)...O(w3): 0.279(2)nm, O(w2)...O(w4): 0.271(2)nm), 未配水分子再通过 与相邻网上的苦味酸根上的硝基氧原子形成分子间氢键(O(w3)...O(6): 0.280(2)nm, O(w4) ...O(12): 0.292(2)nm), 从而将不同网上的 Zn²⁺联系起来, 沿晶胞中 *a* 轴方向堆积得三维结 构(见图 3), 未配水分子、苦味酸根在形成三维空穴的同时也被包合在其中。而在^[14]中则是 4, 4'-bpy 与配位水形成分子间氢键。

3 结 论

在标题配合物中,4,4'- 联吡啶与锌配位形成方形网络,苦味酸根离子并没有配位,而是通 过氢键镶嵌在网络中,这进一步证实了具有多孔的4,4'- 联吡啶配合物易包合一些形状高度 专一的芳香族客体分子的论断。此外,苦味酸根离子通过分子间氢键将二维方形网进一步桥连 成三维结构,这不同于文献^{114]}报道的由4,4'- 联吡啶形成分子间氢键而进一步得到高维骨架 的结构。

参考文献

- [1] Carlucci L., Ciani G., Proserpio D. M., Sironi A. J. Chem. Soc., Dalton Trans., 1997, 1801.
- [2] Hagrman D., Hammond R. P., Haushalter R., Zubieta J. Chem. Mater., 1998, 10, 2091.
- [3] Batsarnov A. S., Begley M. J., Hubberstey P., Stroud J. J. Chem. Soc., Dalton Trans., 1996, 1947.
- [4] Blake A. J., Hill S. J., Hubberstey P., Li W. S. J. Chem. Soc., Dalton Soc., 1998, 909.
- [5] Losier P., Zaworotko M. J. Angew. Chem., Int. Ed. Engl., 1996, 35, 2779.
- [6] Gable R. W., Hoskins B. F., Robson R. J. Chem. Soc., Chem. Commun., 1990, 1677.
- [7] Fujita M., Kwon Y. J., Washizu S., Ogura K. J. Am. Chem. Soc., 1994, 116, 1151.
- [8] Lu J., Paliwala T., Lim S. C., Yu C., Niu T., Jacobson A. J. Inorg. Chem., 1997, 36, 923.
- [9] Gardner G. B, Venkataraman D., Moore J. S., Lee S. Nature, 1995, 374, 792.
- [10] MacGillivray L. R., Subramanian S., Zaworotko M. J. J. Chem. Soc. Chem. Commun., 1994, 1325.
- [11]Carlucci L., Ciani G., Proserpio D. M., Sironi A. J. Chem. Soc., Chem. Commun., 1994, 2755.
- [12] Subramanian S., Zaworotko M. J. Angew. Chem. Int. Engl., 1995, 34, 2127.
- [13] Yaghi O. M., Li H. L. J. Am. Chem. Soc., 1995, 117, 10401.
- [14] LIANG Fu-Pei(梁福沛), CHEN Zi-Lu(陈自卢), HU Rui-Xiang(胡瑞祥), LIANG Hong(梁 宏), YU Kai-Bei(郁开北), ZHOU Zhao-Hui(周朝晖) *Huaxue Xuebao*(*Acta Chimica Sinica*), **2001**, **59**(3), 405.
- [15] Huang S. D., Xiong R. G. Polyhedron, 1997, 16(22), 3929.
- [16] Tong M. L., Ye B. H., Cai J. W., Chen X. M., Ng S. W. Inorg. Chem., 1998, 37, 2645.

Syntheses and Crystal Structures of the Complexes Formed by Zinc and 4, 4'-bipyridine

LIANG Fu-Pei CHEN Zi-Lu HU Rui-Xiang LIANG Hong*

(Department of Chemistry, Guangxi Normal University, Guilin 541004)

YU Kai-Bei

(Analysis Center, Chengdu Branch of Chinese Academy of Science, Chengdu 610041)

ZHOU Zhao-Hui

(Department of Chemistry, Xiamen University, Xiamen 361005)

The complex of the formula $[Zn(4, 4'-bpy)_2(H_2O)_2]$ (pic) $_2 \cdot (H_2O)_2$ was obtained from the reaction of the zinc picrate and 4, 4'-bipyridine, and characterized by elemental analysis, IR spectrum and X-ray diffraction. It crystallizes in the monoclinic space group *Cc* with cell parameters a = 1.4390(2), b = 1.1418(1), c = 2.2908(3)nm, $\beta = 95.08(1)^\circ$, V = 3.749(1)nm³, Z = 4. It has infinite 2-D network structures, and the 2-D networks are extended into 3-D network structures by packing along the *a*-axis through hydrogen bonding, exhibiting a certain inclusion phenomenon.

Keywords: crystal structure 4, 4'-bipyridine picric anion inclusion phenomenon