Vol. 18, No. 1 Jan. 2002

NH₄F-LnF₃体系的合成及荧光性质

由芳田 王颖霞 林建华*

(稀土材料化学与应用国家重点实验室,北京大学化学与分子工程学院,北京 100871)

陶冶巨新侯雪颖

(中国科学院高能物理研究所同步辐射实验室,北京 100039)

利用稀土氧化物与 NH₄HF₂ 的直接反应和水热台成方法系统地研究了 NH₄F-LnF₃ 体系。直接反应的主要产物是 NH₄LnF₄, LnF₃ 和 NH₄Ln₂F₁; 水热反应的主要产物则是 NH₄Ln₃F₁₀ 和 LnF₃, 同时研究了 NH₄CdF₄: Fu³⁺的 VUV 荧光性质。Gd³⁺与 Eu³⁺离子 之间存在能量传递过程, Eu³⁺离子的发光以³D₀ \rightarrow ⁷F₂ 为主,表明稀土离子在 NH₄CdF₄ 中处于非中心对称的格位。

关键词:	稀土氟化物	水热合成	真空紫外	能量传递
分类号:	0611.6			

人们对稀土离子的光谱性质的研究主要集中在 紫外和可见区域, 对真空紫外 (VUV) 波段的荧光性 质了解较少。最近,等离子平板显示器件(PDP)的发 展和对无汞荧光灯的需求,使材料在真空紫外光激 发下的荧光性质备受关注^[1,2]。氟化物的能量间隙比 较宽、是研究稀土离子在真空紫外光激发下的荧光 性质的合适基质材料^[3]。人们曾对 AF-LnF₃(A=碱 金属, Ln = 稀土离子) 氟化物体系的结构和性质进 行了大量的研究。LiLnF₄具有白钨矿结构,其中 LiYF₄ 是良好的激光晶体基质^[4];当 A = Rb 时可以 得到 Rb3LnF6、Rb2LnF5、RbLnF4、RbLn2F7 和 RbLn3F10 五种化合物,稀土离子在这些化合物中的光谱性质 也曾有报道^[5]。碱金属 - 稀土氟化物是可以在 HF 气氛保护下和高温下由 AF 与 LnF₃ 直接反应得 到^[6],但高温反应容易引人氧杂质。NH₄F-LnF₃复合 氟化物在高温下不稳定、不能用高温固相方法合 成。Zalkin 和 Templeton^[7]利用溶液反应得到立方结 构的 NH₄Ln₃F₁₀(Ln = Ho, Er 和 Tm); Russo^[3] 利用类 似的方法合成出(NH₄)₃Ln₂F₉·H₂O(Ln = La, Pr, Sm, Er 和 Y) 和 (NH₄) $_{2}$ Ln₃F₁₁ · H₂O(Ln = Dy, Ho, Er 和 Y)。Rajeshwar¹⁹¹利用低温固相反应在 130~150℃ 对 NH,F-LnF3体系进行了研究。Plitzko¹⁰¹利用稀土金属 与 N₂H₄F₂ 的反应在 80~350℃合成出 NH₄LnF₄

(Ln = La-Dy)。最近我们利用水热方法合成 NaGdF4^{,11)}和 NH4Ln3F10(Ln = Dy、Ho、Y, Er 和 Tm)⁽¹²⁾。在本文中,我们分别利用密闭体系中稀土氧 化物与 NH4HF2 的直接反应和水热合成方法系统研 究了 NH4F-LnF3 体系的物相、结构及真空紫外光激 发下 NH4GdF4: Eu³⁺的荧光性质。

- 1 实验部分
- 1.1 样品的制备

分别用两种方法:稀土氧化物与 NH₄HF₂ 的直 接反应和水热方法合成了 NH₄F-LnF₃ 体系的样品, 实验中所用稀土氧化物纯度均为 99.99%, NH₄HF₂ 为分析纯,水为二次蒸馏水。直接反应是将稀土氧化 物和 NH₄HF₂ 按摩尔比为 1:10 混合均匀,在聚四氟 乙烯内衬的反应釜中,在一定温度下使稀土氧化物 与 NH₄HF₂ 直接发生反应,生成相应的复合氟化 物。我们分别研究了在两个不同条件下的反应;一是 在 120℃反应 4 天 (表示为 A-1),一是在 220℃反应 4 天(表示为 A-2)。水热反应是将原料按 1.0Ln₂O₃: 10.0NH₄HF₂: 200H₂O 的摩尔比,在反应釜中于 220℃晶化 4 天 (表示为 B)。用于 VUV 荧光性质研 究的 NH₄GdF₄: Eu³⁻是按反应 A-2 的条件制备的,原 料的摩尔比为 (1 - x) Gd₂O₃: xEu_2O_3 : 10.0NH₄HF₂

收稿日期:2001-10-30。收修改稿日期:2001-11-12。

国家自然科学基金资助项目(No. 29731010),国家重点基础研究规划项目(973项目),国家杰出青年基金资助。

^{*}通讯联系人。E-mail: jhlin@ chem. pku edu. en

第一作者:由芳田,女,30岁,博士研究生;研究方问:无机固体化学。

第18 卷

维普资讯 http://www.cqvip.com

to the Formation of Ammonium Rare Earth Fluorides

system			product			
	1991 / JL	A-1	A-2	D		
La	1.121	NH LaF. + LaF	LaF ₂	LaF ₁		
Pr	l. 156	NEL PrF4 + PrF2	FrF3	PrF1		
Nd	1.175	$NH_4NdF_4 + NdF_1$	NHANdFa + NdFa	NdF3		
Sm	1.203	NH_SmF4	NH ₄ SmF ₄	StaF3		
Eu	L. 223	NH,EuF,	NH ₄ EuF ₄	EuFi		
Gd	1.233	NH4GdF4	NH₄GaF₄	GdF3		
ТЪ	1.254	NH4TbF4	NH4TbF4	NH₁TԵ₁Fս։		
Dy	1.265	NH ₂ DyF ₄	NH_DyF_	NH4Dy5Fm		
Ho	1 276	NH4H02F-	NII, HozF	NH4HoxF10		
Y	1 281	NH ₄ Y ₂ F ₇	NH4Y2F7	NH ₄ YյFա		
Er	1. 298	NH Er2F	NH4Er2F7	NH4Et3F14		
Tm	1.310	NH4Tm2F	NH.Tm2F7	NH4Tm3Ft:		
Yb	1.321	NH ₄ Yb ₂ F7	NH ₄ Yb ₂ F	NH₄Yե₂Բա		
Lu	1.333	NH ₄ Lu ₂ F,	NH4Lu2F7	NH4LusF.a		

(x=0.5~15.0mol%)。上述反应所得产物均用二 次水充分洗涤,并在 80℃烘干。

表1

1.2 测试仪器

X 射线衍射分析在 Rigaku D/max 2000 型粉末 衍射仪上进行,使用 Cu Kα 辐射源和石墨单色器。真 空紫外光谱在北京电子对撞机同步辐射生物光谱站 进行,激发光谱利用水杨酸钠校正。

2 结果和讨论

2.1 反应条件对 NH₄F-LnF₃ 体系的产物物相的影 响

表 1 列出在不同反应条件下得到的 NH4F-LnF3 体系的产物;直接反应与水热方法得到的产物不同: 稀土氧化物与 NH₄HF₂ 直接反应的主要产物是 NH4LaF4和NH4La2F7两种复合氟化物和稀土三氟 化物; 水热反应的主要产物则是 NH₄Ln₉F₁₀ 和稀土 三氟化物。产物的结构与稀土离子大小具有一定的 相关性。表中同时列出了化合物中阳离子半径的比 值(R=rsm:/ruv);在直接反应得到的产物中,半径 较小的稀土离子(R > 1.27)生成 NH₄Ln₂F₇(Ln = Ho-Lu 和 Y); 离子半径比值在 1.20 < R < 1.27 时, 产物是 NH₄LnF₄(Ln = Sm-Dy); 而对较大的稀土离子 (R < 1.20) 体系(Ln = La, Pr 和 Nd), 复合氟化物不 稳定。在较低温度下(A-1),产物是 NH4LnF4 和 LnF3 的混合物; 而在较高温度下 (A-2), 离子半径较大的 体系只出现简单稀土三氟化物(Ln = La 和 Pr)。从以 上实验事实可以知道、复合氟化物的稳定性受稀土

离子尺寸影响很大, 而产物中的稀土三氟化物可以 看成是复合氟化物的分解产物。水热反应 (B) 的产 物不同于直接反应。当 R < 1, 25 时, 只得到 LnF_3 (Ln = La-Gd); R > 1, 25 的产物为 $NH_4Ln_3F_{10}(Ln = Tb-Lu 和 Y)$ 。

图 1 给出了上述产物中几个典型化合物 NH₄GdF₄、NH₄Tm₂F₇和 NH₄Lu₃F₁₀的X 射线粉末衍 射图。NH₄GdF₄属于正交晶系,空间群 *Pbcm*. 晶胞参 数为 a = 8.555(2)Å, b = 7.237(2)Å, c = 6.316(1)Å; 直接反应 (A-1 和 A-2) 得到产物 NH₄LnF₄(Ln = Sm-Dy)都具有正交结构, Plitzko 等¹¹⁰¹在 300℃也曾 得到正交结构的 NH₄DyF₄、但 Rajeshwar⁽⁹⁾等在 130~150℃则得到立方结构 NH₄LnF₄(Ln = Sm-Tb)。直接反应得到的 NH₄Ln₂F₇(Ln = Ho-Lu 和

Fig. 1 XRD patterns of ammonium rare earth fluondes
(a) NH4GdF4; (b) NH4Tm2F7, (c) NH4TabF16
(* hexagonal structure)

· 43 ·

Y) 为六方晶系.其中 NH₄Tm₂F₇的晶胞参数为 o =13.411(2)Å, c = 11.897(2)Å: Rajeshwar⁽⁹⁾得到的则 是立方结构的 NH₄Ln₂F₇(Ln = Dy-Lu 和 Y)。水热方 法得到的产物中同时存在六方和立方结构的 NH₄Lu₃F₁₀。直接反应可以用下式表示:

 $Ln_2O_3 + 6NH_4HF_2 \rightarrow 2NH_4LnF_4 + 4NH_4F + 3H_2O$ (1) $Ln_2O_3 + 6NH_4HF_2 \rightarrow NH_4Ln_2F_7 + 5NH_4F + 3H_2O$ (2) 2. 2 NH_4GdF_4: Eu³⁺的 VUV 荧光性质

NH₄GdF₄: Eu³⁺(1. 0mol%)的 VUV 激发光谱如 图 2 所示。NH₄GdF₄: Eu³⁺在真空紫外和紫外波段的 几组锐峰,分別属于 Gd³⁺离子从基态*S₇₋₂ 到激发态 " $f_1(274nm)$ 、" $D_1(252nm$ 和 245nm)和 $G_1(202nm$ 和 196nm)的跃迁。根据稀土离子在 CaF₂中的吸收光 谱以及对 F⁻→ Eu³⁺的电荷迁移态和稀土离子在氟 化物中的基质的吸收的研究^[13-16]、位于 125nm 附近 强的宽带吸收基本上属于 Gd³⁺离子 4f - 5d 跃迁。

图 3 给出了 NH4CdF4: Eu³⁺(1.0mol%)的荧光 发射光谱、位于 311nm 的锐峰归属于 Gd³⁺离子的 ^{*} $P_{J} \rightarrow {}^{8}S_{7/2}$ 跃迁、位于长波的发射属于 Eu³⁺离子的 f - f 跃迁发射。Eu³⁺离子的发光对所处的晶体场的 对称性相当敏感,当 Eu³⁺离子处于中心对称的格位 时、磁偶极跃迁 ${}^{3}D_{0} \rightarrow {}^{?}F_{1}$ 为宇称允许跃迁:当 Eu³⁺ 离子处于非中心对称的格位时、则以电偶极跃迁 ${}^{5}D_{0} \rightarrow {}^{*}F_{2}$ 为主。可以看出、Eu³⁺离子的 ${}^{5}D_{0} \rightarrow {}^{?}F_{2}$ 的发射强度高于 ${}^{5}D_{0} \rightarrow {}^{?}F_{1}$ 的发射强度,并且 ${}^{5}D_{0}$ $\rightarrow {}^{*}F_{4}$ 的发射也相当强。这与稀土离子在正交结构 的 NH4GdF4(空间群 *Pbem*)处于非中心对称的 4*d* 格 位是一致的。

2.3 Gd'*与 Eu* 离子之间的能量传递

Gd³⁺与 Eu³⁺之间的能量传递人们已经做过大量的研究,并认为是双光子发射的重要途径之 —^[17]。图 2 所示的 NH₄GdF₄: Eu³⁺(1, 0mol%)激发光 谱中没有出现 Eu³⁺离子的 *f*-*f* 跃迁的吸收,表明在 NH₄GdF₄: Eu³⁺中、Gd³⁺与 Eu³⁺离子之间可以发生有 效的能量传递。图 4 给出 NH₄Gd₁₋,F₄: xEu³⁺体系 Eu³⁺和 Gd³⁺离子的发光强度随 Eu³⁺离子的浓度的 变化。随着 Eu³⁺离子浓度的增加、Eu³⁺离子的发射 强度逐渐增强;当 x 接近 5. 0mol% 时强度最大,接 着又趋于降低。Gd³⁺离子的发射强度随 Eu³⁺离子浓 度的增加而降低,这进一步表明 Gd³⁺与 Eu³⁺离子之 间确实存在能量传递过程。

- 图 4 NH₄Gd₁-,F₄: xEu³⁺体系 Eu³⁺和 Gd³⁺离子的发光 强度与 Eu³⁺离子的浓度之间的关系
- Fig 4 Emission intensity variation of ${}^{5}D_{c} \rightarrow {}^{7}F_{3}$ transition of Eu³⁺ and ${}^{8}P_{1} \rightarrow {}^{8}S_{2}$ transition of Gd³⁺ in NH₄Gd₁₋,F₄: xEu³⁺ (0.5 \leq x \leq 15. 0mol%), $\lambda_{c_{3}} = 274$ nm

 (\blacksquare) ⁵ $D_0 \rightarrow {}^7F_2$ transition of Eu³⁺, $\lambda_{en} = 620$ nm;

 $(\blacktriangle) {}^{\circ}P_1 \rightarrow {}^{\circ}S_{1/2}$ transition of Gd^{3,*}, $\lambda_{m} = 3 \pm 1 \text{ nm}$

3 结 论

通过在不同的反应条件下对 NH₄F-LnF₃ 体系的 研究、发现稀土氧化物与 NH₄HF₂ 的直接反应的主 要产物是 NH₄LnF₄ 和 NH₄Ln₂F₇ 两种复合氟化物和 稀土三氟化物; 水热反应的主要产物则是 NH₄Ln₂F₁ 和稀土三氟化物。并且产物的结构与稀土离子大小 具有一定的相关性。通过研究 Eu³⁺掺杂的 NH₄CdF₄ 的 VUV 荧光性质,验证了稀土离子在 NH₄CdF₄结构 中处于非中心对称的格位、并且 Cd³⁺离子有效地将 能量传递给 Eu³⁺离子。关于其它条件下的水热反应 有待于进一步研究。

参考文献

- [1] Krupa J. C., Queffelee M. et al Mat. Sci. Forum, 1999, 315 ~ 317, 27.
- [2] Ronda C. R. J. Alloys Comp., 1995, 225, 534.
- [3] Krupa J. C., Mayolet A., Queffelee M. Ann. Chim. Sci. Mat., 1998, 23, 431.
- [4] Weper M. J. Methods of Experimental Physics, Tang C. I.
 (Ed.), Academic Press: New York, 1979, 15A, p167.
- [5] Ellens A., Kroes S. J., Sytsma J., Blasse G. Mat. Chem. Phys., 1991, 30, 127.

- [6] Greis O., Haschke J. M. Handbook on the Physics and Chemistry of Rure Earths, Gschneider K. A. (Ed.), North-Holland: Amsterdam, 1982, 5, p387.
- [7] Zalkin A., Templeton D. H. J. Am. Chem. Soc., 1953, 75, 2453.
- [8] Russo R. C., Haendler H. M. J. Inorg. Nucl. Chem., 1974, 36, 763.
- [9] Rajeshwar K., Secco E. A. Can. J. Chem., 1977, 55, 2620.
- [10] Plitzko C., Meyer G. Z. Anorg. Allg. Chem., 1997, 623, 1393.
- [11] YOU Fang-Tian(由芳田), WANC Ying-Xia(王颖颜), LIN Jian-Hua(林建华), TAO Ye(陶 治) Wan Huazue Vuebao (Chinese J. Inorg. Chem.), 2001, 17(1), 27.
- [12] Kang Z. J., Wang Y. X., You F. T., Lin J. H. J. Solid State Chem., 2001, 158, 358.
- [13]Krupa J. C., Queffelec M. J. Alloys Comput., 1997, 250, 287.
- [14]Szczurek T., Schlesinger M. Rare Earths Spectroscopy, World Scientific: Singapore, 1985, p309.
- [15] Eugene Loh Phys. Rev., 1966, 147, 332.
- [16] Dorenbos P. J. Lumin., 2000, 91, 91.
- [17] Wegh R. T., Donker H., Oskam K. D., Meiperiak A Science, 1999, 283, 663.

Systematic Synthesis of Ammonium Rare Earth Fluorides and the Luminescent Properties of NH₄GdF₄: Eu

YOU Fang-Tian WANG Ying-Xia LIN Jian-Hua

(College of Chemistry and Molecular Engineering, Peking University, Beijing 100871)

TAO Ye JU Xin HOU Xue-Ying

(Synchrotron Radiation Laboratory, Institute of High Energy Physics, Beipng 100037)

NH₄F-LnF₃(Ln = rare earth) systems were systematically studied by direction reaction of Ln₂O₃ and NH₄HF₂ and hydrothermal synthesis. For the direction reactions, the products tend to be NH₄LnF₄ for the light rare earths (Ln = La-Dy) and NH₄Ln₂F₂ for the heavy rare earths (Ln = Ho-Lu and Y); while the hydrothermal condition favors the formation of NH₄Ln₃F₁₀ compounds. The luminescent properties under vacuum ultraviolet light(VUV) were studied for the Eu³⁺ doped NH₄GdF₄. The Gd³⁺ ions transfer their energy efficiently to the Eu³⁺ ions, and the predominant emission of Eu³⁺ is the ⁵D₀ \rightarrow ³F₂ transition, demonstrating that the rare earth ions occupy the noncentrosymmetrical sites in NH₄GdF₄.

Keywords:

ammonium rare earth fluorides energy transfer

hydrothermal synthesis

vacuum altraviolet (VUV)