Vol. 18, No. 2 Feb., 2002

三甘氨酸双 11 钨硅双核稀土杂多配合物的合成与性质

何水样* 张 迪 赵建设 魏永峰 董发新 史启祯 (西北大学化学系、陕西省物理无机化学重点实验室、西安 710069)

利用一缺位杂多酸对一维链式配合物的断链取代反应,合成了未见文献报道的以甘氨酸为桥联配体的双核稀土杂多配合物,其结构简式为K₁₀[($O_{30}W_1$ S₄)RE(Gly)₃RE(SiW₁₁O₃₀(]、9H₂O(RE = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Y; Cly = NH₄⁺ CH₂COO⁺(, X-射线粉末衍射分析表明得到了新的物相, TG-DFG 结合变温红外讨论了配合物的热分解机理,并通过元素分析, IR, UV, ¹²C NMR、¹³³W NMR、极谱及循环伏安法对其进行了表征,提出了其可能的结构。

关键词	稀土	甘氨酸	杂多配合物
分类号:	0614.33	0613, 72	0614.61*3

自 Klemperer^[1] 首次合成出有机金属杂多配合 物[η³-C_sH_sTiPW₁₁O₃₀]⁴⁻以来,这类配合物的研究受 到极大关注、近年来发表了大量相关文章^[2,3]、但仍 局限于有机金属化合物范畴、而有机配体与杂多化 合物的混配配合物则未见文献报道。

Peacock⁽⁴¹、Zubairi⁽⁵¹)的工作指出镧系原子与 12-、18-系列一缺位不饱和杂多酸盐在摩尔比 1:1、 1:2的条件下反应均得到 1:2型配合物 LnL₂(L = XM₁₁O₃₉ⁿ⁻或 X₂M₁₇O₆₁ⁿ⁻, X = Si⁴⁻, P⁴⁺, Ti³⁺等; M = Mo, W)。翟应离⁽⁶⁾通过调整稀土与杂多酸盐的物料 比为 2: I, 合成了 1:1 型稀土杂多配合物 LnL₆

我们在摩尔比为 1:1 的条件下、利用一缺位杂 多酸盐对一维链式的稀土甘氨酸配合物 { $[RE(Gly)_3$ $(H_2O)_2$]Cl₃·H₂O]_{*}(Gly = NH₃⁺CH₂COO⁻)进行断链 取代反应、首次合成了含有机配体的 1:1 型双核稀 土杂多配合物。并通过一系列表征手段、推测出了 它们的结构。

1 实验部分

1.1 试剂、仪器及分析方法

RECl₃・nH₂O 用稀土氧化物(上海跃龙化工厂 生产、纯度 > 99、95%)与浓盐酸自制。甘氨酸为生 化试剂: Na₂WO₄・2H₂O 及 Na₂SiO₄・9H₂O 均为分析 纯。 C、H、N含量用 P. E. 2400 型元素分析仪、元素 K 用美国 TJA 公司的 IRIS Advantage 全谱直读等离 子体发射光谱、RE 含量用 EDTA 配位滴定、W 用 8 羟基喹啉沉淀法分析。IR 用 EQUINO55 型红外光谱 仪(KBr 压片)、UV 用 1100 型紫外可见分光光度计、 ¹³C NMR 用 Fx-90Q 傅里叶变换核磁共振仪、¹⁴³W NMR 用 Varian Unity-400 型核磁共振仪、TG-DTG 用 NETZSCH STA 449C 热分析仪、X 射线衍射用 D/ max-ⅢC 型自动 X 射线衍射仪。

1.2 配合物的合成及性质

{[RE(Gly)₁(H₂O)₂]Cl₃ · H₂O]_n(中间体(1))按 文献⁽¹⁾合成。α-K₈SiW₁₁O₃₄ · 13H₂O(中间体(2))按文 献⁽⁸⁾合成。中间体(1)、(2)均经元素分析及红外鉴 定。

分别称取 0. Immol 的 { $[RE(Gly)_3(H_2O)_2]Cl_3$ ・ H₂O] "和 K₃SiW₁₁O₃。·13H₂O、并各溶于 25mL 水 中。用盐酸调杂多酸盐溶液的 pH 值约为 3、加热使 完全溶解。将两份溶液分别加热至 110℃。 { $[RE(Gly)_3(H_2O)_2]Cl_3$ ·H₂O},溶液于电磁搅拌器上剧烈 搅拌并迅速倒入杂多酸盐溶液。倒入过程中有沉淀 产生、待完全倒入后沉淀消失。在 110℃条件下蒸发 溶剂至约 15mL。放置冷却至室温有固体析出。抽滤 并用大量水及乙醇洗涤 70℃红外干燥、得标题配合 物。

收稿日期:2001-01-20。收修改稿日期:2001-10-29。 陕西省自然科学基金资助项目(No. 98H010)。

^{*}通讯联系人。 第一作者:何水梓、女、54岁,教授;研究方向:无机及配位化学。

	表し	配合物的元素分析
Tabla 1	Flor	antel Analusia of Complement

无机化学学报

	RE/%	W / %	C/%	H/%	N7%
complexes	found (caled.)	found(caled)	found (caled)	found/caked 1	found(caled_)
K10[142(Gly)3L2] + 9H2O	4.21(4.19)	61.06(61.02)	1.21(1.10)	0. 5310. 531	0.68(0.63)
$K_{10}[Pr_2(Gly)_3L_2] + 9H_2O$	4,11(4,25)	61.18(60.98)	$1 \ 23(1, 10)$	0.7310 53}	0.66(0.63)
$\mathrm{K}_{10}[\mathrm{Nd}_2(\mathrm{Gly})_3\mathrm{L}_2]+9\mathrm{H}_2\mathrm{O}$	4 35(4.35)	61 08(60 92)	1 18(1.08)	0.55(0.53)	0.6310 631
$K_{10}[Sm_2(Gly)_3L_2] + 9H_2O$	4 50(4, 52)	60.69160.81)	1.13(1.08)	0.6410.531	0.48(0.63)
$K_{10}[Eu_2(Gly)_2L_2] \cdot 9H_2O$	4.57(4.57)	61.21(60.78)	1.20(1.08)	0. 5510, 531	0.65(0.63)
$\operatorname{K}_{00}[\operatorname{Gd}_2(\operatorname{Gly})_3L_2] + 9\operatorname{H}_2O$	4 72(4,71)	61.07(60.68)	0.92(1.08)	0.59(0.53)	0.58(0.63)
K to [Tb2 (Gly) 3L2] • 9H2O	4 75(4,77)	60.48(60.65)	0,95(1.08)	0.55(0.53)	0.5910.631
K 10 [Dy2 (Gly)3L2] • 91120	4.82(4.87)	60.53160.59)	1.05(1.08)	0.5910 53)	0.50(0.63)
$K_{10}[\Upsilon_2(\operatorname{Cly})_3L_2]+9\mathrm{H}_2\mathrm{O}$	2 71(2,72)	61.82(61.95)	1.11(1.08)	0.65(0.53)	0.57(0.63)

 $\label{eq:Gly} Gly = NH_3^+ CH_2 COO^-, \ L = 1 (\alpha - S_1 W_{11} O_{39})^{4-}.$

标题配合物均显示稀土的特征颜色。可溶于水、不 溶于甲醇、乙醇及丙酮等有机溶剂。

1.3 关于合成及处理方法的讨论

配合物采用分步合成、以中间体(2)对中间体 (1) 进行断链取代反应制备。对杂多酸盐的量子化 学研究表明、O_b、O_b为分子的主要活性中心^{19,10}。 α-Keggin 结构的杂多酸盐脱去一个 O₄ 和一个 W 原 子后,暴露出近似位于平面的两个 0,和两个 0。。这 四个活性氧的空间位置为杂多酸盐配体提供了良好 的配位条件,实验表明 Ln3+ 与这四个近似平面的氧 同时成键[4-6]、这说明一缺位的杂多酸盐阴离子具 有较强的配位能力、它们可能会取代某些配位能力 较弱的配体。而{[RE(Gly)3(H2O)2]Cl3·H2O}。刚好 符合以上特点、且其结构特点使杂多酸盐配体仅能 取代其一侧的三个 Gly 分子,另一侧由于较大位阻 的杂多阴离子之间的相互排斥、使取代难以进行,这 样在发生断链取代反应的同时还可保留中间体(1) 的结构特征。并且由于中间体 (1) 具有一维链式结 构、通过调整中间体(1)、(2)的物料比,可达到截取 不同链长、制备系列多核稀土杂多配合物的目的、根 据这一思路、我们已经制得了一些三核及四核的该 类配合物。

反应得到的配合物为油状物,文献¹¹¹中对油状 物的处理为冷冻使结晶。我们采用110℃高温煮沸 的方法亦消除了油状物的影响。油状物的产生是杂 多化合物的"假液相"特征引起的,而根据"熵增"原 理、杂多阴离子体相内的水分子有脱离体相的倾 向。在加热的条件下,这种倾向更趋强烈,同时杂多 阴离子骨架的振动加强,骨架间隙加大,为体相内水 分子的脱离创造了条件,从而可使"假液相"特征消 失得到固体配合物。

1.4 元素分析

配合物中 C, H, N, W 及 RE 含量分析结果列于 表 1。

用 ICP 测定了 Pr 杂多配合物中 K 的含量、结果 表明 1mol 该配合物中含有 10 个 K、未检出 Cl⁻。由 元素分析结果可知、配合物中摩尔比 RE: Gly: L = 2: 3: 2(RE: L = 1:1),符合我们所建立的结构模型。

2 结果与讨论

2.1 红外光谱

配合物的红外光谱基本相似、在1300~1650 em⁻¹ 处保留了中间体 (1) 的一些特征吸收峰, 表明 在配合物中中间体(1)的结构保持不变。中间体(1) 中 ν_a(COO⁻) 有肩峰出现、表明其以多聚物形式存 在[12], 而在标题配合物中肩峰消失, 说明杂多酸盐 与中间体(1)发生了反应。同时在标题配合物的处理 过程中、若未充分洗涤时、则配合物的红外光谱在 1730cm⁻¹ 附近出现了游离甘氨酸中 - COOH 的特征 吸收峰,而在充分洗涤后该峰消失,这表明杂多酸盐 取代了中间体(1)中的部分甘氨酸,亦即发生了断链 取代反应。从表2可以看出配合物的 v_s(COO⁻) 较 中间体(1)有一定红移,这是由于具有更强配位能力 的 11- 硅钨杂多酸盐取代了 RE³*离子—侧的甘氨 酸. 致使另一侧甘氨酸的 RE-O 键的键强减弱所 致。而由图 4 所示的结构可知配合物具有较高对称 性,因此 ν_i(COO⁻)并未发生较大红移。杂多化合物 具有三级结构、杂多阴离子的表面氧易于形成氢 键。标题配合物中,杂多阴离子不仅可与晶格水中的 H⁺形成氢键、同时还可能与 Gly 分子中的 -NH₃⁺基 团中的 H*离子形成氢键、这样 N-H 键核间电子密

维普资讯 http://www.cqvip.com

· 173 ·

	Tab	le 2 1)	R Spect	rum of Co	mplexes (v	/ cm -1)			
complex	$\nu_{\rm re}({\mathbb W}{\operatorname{-}}{\mathbb Q}_{\rm d})$	$\nu_{\rm m}$ (S	V-0.}	$\mu_{**}(\mathbb{W}_{\uparrow} \mathbb{O}_{\mathrm{b}})$	v., (Si-Oa)	$r_{w}(-NH_{3}^{+})$	$\nu_{\sigma}(000^+)$	v,(COO^)	24-CH₂1
L	962. 8	795.8	721.6		891.5				
LaLo	947	772	729	829	888				
{[Pr(Gly)3(H2O)2]Cl3 + H2O].						1466 5	1621.1	1410 5	1335. 5
$K_{10}[La_2(Gly_1L_2] + 9H_2U$	949, 7	770	718	821 6	882.1	1473 3	1589.8	1410, 9	1330 6
$K_{10}[Nd_2(Gly)_3L_2] + 9H_2O$	951.7	774	714	811.3	895 1	1488.0	1616 0	1412. 9	1330. 0
$K_{10}[Sm_2(Gly)_3L_2] + 9H_2O$	950. 9			810 7	893.8	1487. 9	1615.9	1411-3	1325.0
K19[En2(Gly)3L2] + 9H2O	951.1			810.5	893.2	1486. 0	1616.2	1410.6	1324 9
Kta[Cdz(Cly)aLa] + 9H2O	951 6		722	817.9	891.6	1486. 9	1618.6	1411.9	1327. 2
Kto[Tb2(Gly)aL2] + 9H2O	950. B			814.0	893. 2	1486. 1	1616.5	1412.0	1331. I
$K_{10}[Dy_2(Gly)_1L_2] + 9H_2O$	952.3			614.4	887. 0	1485. 2	1616. 3	1409.6	1325. 2
$K_{10}[Y_1(Gly)_2L_2] + 9H_2O$	952.3		713	817.5	885.0	1488. 3	1620. 8	1410.7	1324.9

表 3 配合物的紫外光谱

Table 3 UV Spectrum of the Complexes

complex	La	Pr	Nd	Sm	Eu	Cd	Th	Dγ	Y2	L
λ _{nax} /nm	248 00	249.50	251.50	252.00	251.00	251.00	253, 50	250.00	251.00	251 5 0

度增大, ν_{ai} (-NH₃⁺)发生紫移。11- 硅钨杂多酸盐与 RE³*的配位形式具有 Peacock 提出的配位模式:即 RE³*与近似位于平面的两个 O₆和两个 O₆配位。在 配合物的 IR 图谱中.又观察到在 500~1000cm⁻¹范 围内 11- 硅钨杂多酸盐的特征吸收带,说明配合物 中保留着 α -Keggin 结构的杂多酸盐。由表 2 可看 出,配位后杂多配体的 ν_{ai} (W-O₄)的两个强吸收峰 发生了红移,且以弱肩峰的形式出现,而原先弱的 ν_{ai} (W-O₆)在配合物中则呈强峰出现。同时由于形成 配合物后,杂多阴离子内聚力降低、减少了键的力常 数, ν_{ai} (W-O₄)反对称伸缩振动发生了较大红移⁽¹³⁾。 配合物在 500~1000cm⁻¹的红外光谱与 REL₂ 极其 相似,这一点证明配合物中 RE³*离子的配位形式符 合 Peacock 提出的模式。配合物在 3400cm⁻¹ 处的强 的宽吸收峰说明配合物中水的存在。

2.2 紫外光谱

以水为溶剂测定了浓度约为 $5 \times 10^{-5} \text{ mol} \cdot L^{-1}$ 的配合物及中间体 (2) 的的紫外光谱数据。配合物 的紫外光谱较相似、在 200nm 及 250nm 附近各有一 个强的吸收峰、分别为 $O_a \to W$ 及 $O_{b'a} \to W$ 的荷移 跃迁。表 3 列出了 $O_{b'a} \to W$ 荷移跃迁的数据。

配合物的紫外光谱数据较配体(L)变化很小, 说明 RE³⁺离子对 O → W 核移跃迁影响较小。

2.3 核磁共振

2. 3. 1 ¹³C NMR

分别在 D₂O 中测定了 Nd 中间体(1)和 Nd 杂多 配合物的 ¹³C NMR 结果见表 4。 表 4 配合物的 ¹³C NMR

Table 4 ¹³C NMR δ of the Compounds

	-COO(H)	-CH:
Cly	173.3	42 3
$\{[Nd(Gly)_3(H_2O)_3] + H_2O\}_6$	170 B9	51.77
$K_m[Nd_2(Gly)_3L_2] + 9H_2O$	174.89	44.30

由表 4 中可以看出, Nd 杂多配合物与自由甘氨酸和 Nd 中间体(1)的 ¹⁵C NMR δ 都不相同, 表明 Nd 杂多配合物中甘氨酸的确参与了配位。

一般情况下,-COO-与稀土离子配位后、电子云 向稀土离子转移,-COO-中C的谱峰应向低场移 动。而在Nd中间体(1)中,-COOH谱峰向高场移动, -CH₂的谱峰则向低场移动,这是因为每分子稀土离 子一侧分别由三个甘氨酸以桥式配位,对每个甘氨 酸分子来说,配位后-COO-上O的电荷密度相对降 低,但是每个甘氨酸又同时处于其余两个甘氨酸的 -COO-的影响下,所以-COO-上C所受的屏蔽作用 实际上是增加了,于是谱峰向高场移动。而-CH₂由 于处于羧基桥配位骨架之外、另两个甘氨酸的影响 效应已经很小了,而与其相连的-COO-上O的去屏 蔽效应起决定作用,所以-CH₂上C的谱峰向低场移 动。

Nd 杂多配合物中两条谱线都较甘氨酸向低场移动、与 Nd 中间体 (1) 比较发现、配位后配合物中-COO-上C的谱线由原来的相对于甘氨酸的高场、移向相对的低场,-CH2上C的谱峰相对于 Nd 中间体(1)向高场移动。化学位移的变化与杂多阴离子的

配位密切相关。杂多酸盐是一类优异的电子受体, 关于其与有机分子形成电荷转移配合物的研究报道 很多^[14]。杂多酸盐与稀土甘氨酸配合物发生断链取 代反应生成标题配合物后,甘氨酸中的电子通过稀 土离子向杂多阴离子转移、这种情况下相邻甘氨酸 的屏蔽效应影响减弱,而-COO-上O原子的去屏蔽 效应起主导作用、-COO-上C的化学位移较自由甘 氨酸增大。对于-CH₂、标题配合物中甘氨酸处于两 个杂多阴离子的屏蔽作用之下.其谱线较中间体向 高场移动也是可以理解的。

2. 3. 2 ¹⁸³W NMR

在 DMSO 中测定了 Nd 杂多配合物的 ¹⁸³W NMR 及化学位移,结果见图 1。

- 图 1 - K₁₀[Nd₂(Gly)₂L₂]・9H₂O 的 [™]W NMR

Fig. 1 ¹⁸³W NMR spectrum of Nd complex

当 Keggin 阴离子 (如 Siw₁₂O₄₀⁴⁻)降解失去 1 个 WO⁻⁴ 时,就变成含有 1 个空位的缺位杂多阴离子 SiW₁₁O₃₉⁶⁻,其阴离子的对称性由 T_4 降为 C_8 ,其¹⁸³W NMR 谱由 Keggin 阴离子的单共振峰变为含有 6 个 峰的谱。1:1 型杂多酸盐的 α -[SiW₁₁O₃₉⁸⁻]由于有 6 种化学环境不同的 W,所以¹⁸³W NMR 应存在 6 条 谱线, δ 在 -100.9 至 -176.2,其强度比为 2:2:1: 2:2:2,峰的强度是距稀土原子最远的 W 原子的共 振峰最弱。但在图 1 中只出现了 5 条特征谱线,各谱 线的 δ 均发生了移动,与稀土离子相临的钨原子的 谱线 (如 ¹⁸³W 的 δ 91.52)由于驰豫现象使^{1.53}W NMR 峰变宽甚至消失¹¹⁵¹。这一点表明一缺位杂多酸 盐与稀土离子配位的事实。

2.4 热分析

在空气气氛中,升温速率为10℃・min⁻¹,在 20~650℃范围内对 Nd 配合物的 TG-DTG 行为(图 2)进行了研究,同时结合变温红外(表 5)对其分解 机理进行了探讨。

配合物的 TG 曲线在开始时表现出增重行为, 表明配合物易吸水。DTG 曲线在 90.5℃和 136.1℃ 有两个失重峰,整个阶段的失重率为 2.60%,相应

10 1		ud5/ GI} /3E2]	• AU 7O	「別文価約	기兀佰
Table 5	IR Spectu	rm Results of	Nd Co	omolex at	Different

配合物で「NU/CLATI, ALLA 的亦迫対象や#

Те	mperatures			(cm ⁻¹)
lemperature	$p_{\mu}(\Psi_{\tau}O_{\epsilon})$	ν.(W-0_)	$ u_{\mathrm{as}}(W_{\mathrm{e}}(\mathbf{v}))$	$\nu_{\alpha}(S(0_i)$
200°C		812 5	952.3	900-9
350℃		805.0	951.5	897.2
450℃	793. 7		950.1	896 6
500℃	789-9		950 8	895.2
550°C	782.1		950 . 0	890-3

于9分子水的失去。此时红外光谱并未发生较大改 变。其中90.5℃为一弱峰,可认为是配合物在开始 阶段吸附的水及结晶水的失去;136.1℃处的强峰为 配合物中配位水的失去,根据失重率计算相当于3 分子配位水的失去。

250℃~600℃范围内配合物的红外光谱保持着 α-K_{*}SiW₁₁O₃₀的特征吸收峰,TG曲线出现连续失 重,归属于甘氨酸的分解阶段,对应于DTG曲线分 別有三个失重峰,表明甘氨酸的分解分为三个阶段, 根据各步的失重率、甘氨酸可能的分解机理如图 2 所示。

甘氨酸中羧基的分步失去与羧酸根采用不同的 配位方式有关。550℃以后杂多酸盐配体开始分解、 600℃以后的红外光谱中已无杂多酸盐的特征吸收。

观察表 5 可以发现、随着温度的升高、各特 征吸收峰都发生了红移、只是程度不同、其顺序为 ν_{ss} (W-O_c), ν_{ss} (W-O_b) > ν_{ss} (Si-O_a) > ν_{ss} (W-O_d)。这 一规律也许与各键的稳定性强弱有关。

2.5 X-射线粉末衍射

采用铜靶型,40kV、35mA,扫描速率10°・ min⁻¹、扫描范围3°~50°。对中间体(1)、(2)及Nd配 何水样等:三十氨酸双11钨硅双核筛土杂多配合物的台成与性质

· 175 ·

	-	1.1.2.0.4.01	-Ψ· — Π	with with		<u>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </u>	ホンにに	בת עים עיר ז	ing ⊐, τ.τ. γα			- 17
				表 6	配合物的	的 X- 射约	的数据					
				Table 6	X-ray	Data of	Complex	es				
intermediate(I)	ส์ / เมค	1 1154	U. 7824	0 5933	0, 3887	0.3312	0 2963	0. 2559	0. 2452	0. 2334	0. 2246	0. 211
	1/10.25	31	64	57	100	95	77	39	71	52	26	39
ntermediate(21	d (uni	1 0644	0. 4772	0.3773	U. 3556	0.3138	0. 3063	0.2671	0. 2590	0. 1984	0 1889	
	$I / I_{er} \sim$	99	74	12	41	35	91	45	53	20	27	
Nd complex	d≠ nni	1.6292	0 9481	0 8308	0 5878	0, 5254	0.4600	0. 3904	0.3304	0.3257	0. 2945	0 257
	1 / In 1/c	26	64	45	26	29	32	36	91	99	42	36
				表	7 配合	r物极谱	数据					
			Tab	le 7 Pa	larograp	ohy Data	of Com	plexes				
	nplexes		Pr	Nd	Sm	Eu	Gd	Ղհ	D۲	Y	L	_
$E_{1,2}$	(I) (mV	- 692	- 716	- 732	- 706	- 710	- 726	- 728	- 7IŬ	- 710	- 728	
$E_{1,2}$	(II)≠mV	- 874	- 862	- 860	- 870	- 858	~ 860	- 862	- 860	- 858	- 934	_
				表	8 配合:	物的极谱	数据					
			1	Fable 8	CV Dat	a of the	Complex	tes				
_		mplexes		$E_{\mathrm{E}}(1)$	mV E _P	(I)≠mV	$E_{\rm Pe}([[])/$	uaV E _{Pe} t	(II)≠mV	$\Delta E_{\rm F}$ / m	V.	
	$K_{10}[L_{d2}($	GI3 I · L2	9H₂Ŭ			- 624	- 928	-	- 1020	92		
	$\mathrm{K}_{10}[\mathrm{Pr}_2)(0)$	GN (:L2) -	9H2O			- 616	- 1008	-	- 1076	68		
	Kia[Nda(Gly) La]	• 9H2O			- 632	- 1004	-	- 1084	80		
	K1:[Sm2]	մեչ) քեշ]	• 911 ⁷ 0	_		- 620	- 988	-	- 1072	84		
	K.a.[Eu2(Ū[γ]+L₂] ·	9H•D			648	~ 1000	-	- {092	92		
	K ₀{Cd₂∖	Gly hLe)	9IL ()			- 648	~ 1020	-	- 1092	72		
	Кա[ՂԵ։Լ։	Gly hL ₂] •	9IL:U	_		- 648	- 1020	-	- 1096	76		
	$K_{10}[D_{32})$	Cly L1 -]	9l{2O			- 684	~ 1984	-	- 1 [4-1	60		
_	K10[Y214]	ly'nL.]∙	911-0			- 672	- 1064		- 1128	64		
	'HN											
	`c 	u										
	مريد	\geq_0										
Kn[[51W-1014]]	Nd	~	Nd(StWaC	20) — (c	306.2 -20	U	KohSiWie	O+4)*4d		NdiS	WiiOid] + 3	CHINE.
	<u>`````````````````````````````````````</u>	50	-	h'ss	й мецій I I I (II	ጭ (, 32°ø)	-	` 0	<u> </u>			
	λ.	- H.C	U.						\c~~			
	њ		.,									
		NID										
404	ь'С.,-3C1bba	1 1 1	5.1.1.1.1.1.N.I			tarsiw ar	<u></u>	17 0 °C CO.	* *k	สหสรณะสา		
lassol we	eight I 443 _A E	±04 et Kirdy		~~~~~			less of v	vaight () 70°6 7005	(0 h6%)	114051101101	*1	
	ΠĻ			\sim				(10)				
		Х. I	耐なめ	ច ដ្រោះ	.(17)	1.000	一中十名	耐加化な	9 H1 과학			
		±⊒3	비금방	7 KmtRd	1 (1 419 741L)	. 9Hi	ノナ日気	取时分用	≠101.7里			
		Fig	3 Possit	ole decon	ipose me	thanism (ot glycine	in Nd c	omplex			

合物进行了 X 射线粉末衍射物相分析、数据列于表 6。

由表可知, Nd 杂多配合物和中间体 (1)、(2) 的 X-射线衍射数据都不相同、表明得到了新的物相。 2.6 电化学

2.6.1 极 谱

在 0.5mol · L⁻¹ 的 HAe-NuAe 缓冲溶液中,以 滴汞电极为工作电极,甘汞电极为参比电极,扫描速 率 50mV · s⁻¹,配合物溶液浓度 5 × 10⁻⁵mol · L⁻¹、 在 550~1000mV 范围内测定了配合物的极谱数据. 结果列于表 7。

从表中可以看出配合物与配体具有两个极谱 峰,并且配合物的 E_{1/2} 较配体更正,这与文献^[10]结 果截然不同,根据文献^[10]的解释,我们认为这是配 合物的电荷密度较配体降低的缘故。这一点同样证 明我们得到了新的配合物。

2.6.2 循环伏安

在 0. 2mol・L⁻¹ HAc-NaAc 缓冲溶液中,采用三

· 176 ·

图4 标题配合物的可能结构

Fig. 4 Possible structure of the title complexe-

电极系统,配合物溶液浓度 5×10^{-5} mol·L⁻¹、扫描 速率 $15 \text{mV} \cdot \text{s}^{-3}$,在 $550 \sim 1200 \text{mV}$ 范围内测定了配 台物的循环伏安行为。结果见表 8。

由表 8 可知, α 异构的配合物两步均为不可逆 还原过程。在第二步还原过程中、*E*_{Pa} 比 *E*_{Pa} 更负, 与文献¹¹⁶¹结果相反、这也是由于体系电荷密度的降 低引起的。

综上所述,我们推测标题配合物可能的结构示 意图为图 4(图 4 中未标出配位水,左边 RE³⁺应配 2 分子水,右边 RE³⁺应配 1 分子水。)

参考 文 献

- [1] Ho R. K. C., Klemperer W. G. J. Am. Chem. Sov., 1978, 100, 6722.
- [2] Finke R. G. Droge M. W. J. Am. Chem. Soc., 1984, 106, 7274.
- [3] ZHU Dong-Sheng(朱东升), XU Lin(许林), HU Chang-Wen(胡长文) et al Gaodeng Xuexiao Huaxue Xuebao (Chem. J. Chinese Universities), 1998, 19(12), 1895.
- [4] Peacock R. D., Weakley T. J. R. J. Chem. Soc. (A),

1971, 12, 1836.

- [5] Zubairi S. D., Ifzal S. M. Inorg. Chem. Acta, 1977, 22, L29.
- [6] ZHAI Ying-Li(翟应离)、CHEN Xue-Nian(陈学年)、TAN Min-Yu(谭民裕) et al Gaodeng Xuexuo Huaxue Xuebao (Chem. J. Chanese Universities), 1991, 12(3), 299.
- [7] JIN Tian-Zhu(金天柱), YANG Chang-Qing(杨常青), YANGg Qing-Zhuan(杨清枝) et al Gaodeng Xuexiao Huaxue Xuebao(Chem. J. Chinese Universities), 1989, 10 (2), 118.
- [8] TeZe A., Herve G. J. hung. Chem., 1977, 39, 999.
- [9] Jiangkon Haoyi(江口浩一)、Shantian Yu(山 添)、 Qingshan Zhelang(清山哲朗) et al Accelerant(触媒)、 1984、26(5)、294.
- [10] WANG En-Bo(王恩波), WANG Li-Geng(王力排),
 WANG Hni-Zhong(王思忠) et al Huaxue Xuebao(Chem. J.), 1994, 52, 1145
- [11]ZHU Zhi-Ping(朱志平)、LIU Jing-Fn(刘景富)、ZHAO Ben-Liang(赵本良) et al Guodeng Xuexiao Huaxue Xuebao (Chem. J. Chinese Universities), 1990, 11(3), 322.
- [12] Mathur B. S., Srivastava T. S. J. Inorg. Nucl. Chem., 1970, 32, 3277.
- [13] LIU Shu-Xia(刘术侠), WANG Li(王 力), LIU Yan-Yong(刘彦勇) et al Zhongguo Xutu Xuebao) J. Chin. Reve. Earth Chem.), 1997, 15(1), 59.
- [14] Attanasio D., Bonamico M., Fares V. et al J. Chem. Soc., Dalton Trans., 1990, 11, 3221.
- [15]LIU Jin-Fu(刘景福), WANG Wei-Qing(王为清), MENG Lu(孟 路) et al Gaodeng Xuexiao Huaxue Xuebao(Chem, J. Chinese Universities), 1996, 17(2), 178.
- [16]LUEN Yu(伦 玉), NIU Zeng-Yuan(牛增元), CHEN Ya-Guang(陈亚光) et al Gaodeng Xuexiao Huaxue Xuebao (Chem. J. Chanese Universities), 1991, 12, 1434.
- [17]WANG En-Bo(王恩波), HU Chang-wen(胡长文), XU Lin(许 林) Introduction to the Chemistry of Heteropoly Acid(多酸化学导论), Beijing: Chemical Industry Press [M], 1998, p218.

Syntheses and Characterizations of Heteropoly Complexes of three Glycine Bis-11 Tungstosilicate Double Lanthanide Element

HE Shui-Yang* ZHANG Di ZHAO Jian-She WEI Yong-Feng DONG Fa-Xin SHI Qi-Zhen

(Department of Chemistry, Northwest University and Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi' an 710069)

In this paper, the syntheses of new complexes $K_{10}[(O_{39}W_{11}Si) RE(GIy)_3RE(SiW_{11}O_{39})] \cdot 9H_2O$ (RE = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Y) were reported. In the complexes, three glycines act as bridge ligand. The complexes were characterized by element analysis, IR, UV, ¹⁰C NMR, ¹⁸³W NMR, TG-DTG, X-ray diffraction, polarography and CV. And their possible structure was determined.

Keywords: rare earth glycine heteropoly complex