

General

系列新铌酸盐 A6"*[Bx"*Nb12-x]Nb4O42 的合成及粉晶 X 射线衍射分析

张高科*·1.2 欧阳世翕² 吴伯麟² 方 亮² 余家国² 施晓红² (1武汉理工大学非金属研究所,²材料复合新技术国家重点实验室、武汉 430070)

关键词: 铌酸盐 化学合成 X射线粉晶衍射 六方化合物 分类号: 0614.51⁺2

Syntheses and X-ray Powder Diffraction Analyses of a New Family of Niobate with Formula $A_6^{n+}[B_x^{m+}Nb_{12-x}]Nb_4O_{42}$

ZHANG Gao-Ke^{*.1,2} OUYANG Shi-Xi² WU Bo-Lin² FANG Liang² YU Jia-Guo² SHI Xiao-Hong² (¹Non-metallic Research and Design Institute. Wuhan University of Technology, Wuhan 430070) (² State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070)

A new series of niobates A_{6}^{n+} [$B_{5}^{m+}Nb_{12-x}$] Nb₄O₄₂(A = K, Ba; B = Ni, Cr, Fe, Ti and Zr) has been synthesized by solid state reaction and the flux method. The morphology, optical properties and chemical stability of the new compounds were studied. The composition of the compounds were determined by chemical analyses and electron probe X-ray microanalysis(EPMA). The results of X-ray powder diffraction(XRPD) analyses confirmed that the compounds crystallized in the hexagonal system with space group $P6_3 / mcm(193)$, and which are isostructure with $K_6CrNb_{13}O_{42}$. X-ray powder diffraction lines for these compounds were well indexed.

Keywords: niobate chemical synthesis X-ray powder diffraction hexagonal compound

0 Introduction

Niobates have many kinds of structures. These are perovskite type $ABO_3(KNbO_3)$, tungsten bronze type $ANb_2O_6(Ba_2NaNb_3O_{15})$, chain and lamellar types^[1-11]. Since the new compound K₆CrNb₁₅O₄₂ with a kind of tunnel structure in the potassium niobate system was found in our laboratory for the first time^[12], we have synthesized a series of compounds with the same structure, for example, K₆FeNb₁₅O₄₂, K₆Ni_{0 67}Nb_{15,33}O₄₂, Ba₆Cr₄Nb₁₂O₄₂ and Ba₆Ni_{2 67}Nb_{13,33}O₄₂ etc. These compounds may be described by the general chemical formula $A_6^{n+}[B_x^{m+}Nb_{12-x}] Nb_4O_{42}[A = K^*, Ba^{2+}; B =$ Ni²⁺, Cr³⁺, Fe³⁺, Ti⁴⁺, Zr⁴⁺; x = (6n-4)/(5-m), 0. 67 $\leq x \leq$ 7; n + and m + are the valence state of A and B]. A is alkali or alkaline earth metal; B is a transition metal. In this paper, we report the synthesis and data of XRPD of the series compounds.

1 Experimental

1.1 Synthesis

★通讯联系人。

收稿日期:2001-05-18。收修改稿日期:2001-08-22。

武汉晨光青年科技计划(No 20005004035)和国家自然科学基金资助项目(No. 50002007)。

第一作者:张高科,男,36岁,副研究员;研究方向:无机材料合成及材料化学物理研究。

第18卷

The samples that was used for XRPD analysis of the series of $A^{a+}[B_1^{m+}Nb_{12-3}]$ Nb₄O₄₂ compounds were prepared by solid state-reaction. The starting materials using analytical grade Nb₂O₅K₂CO₃, BaCO₃, ZrO₂, TiO₂, NiO, Fe₂O₃ and Cr₂O₃, were weighed in storchiometric proportions and thoroughly mixed in alcohol. The mixture was dried and then pressed into pellets under 200kg • cm⁻² pressure. The polycrystalline samples of the compounds $K_{6}[B_{3}^{m+}Nb_{12}]$ Nb₂₄O₄₂(B = Ni, Cr, Fe, Ti, Zr) were prepared by firing the pellets of mixtures in a platinum crucible at $1100 \sim 1185$ °C for 24h in air for B = Ni, Ti, Zr, Fe and in protective atmosphere of Ar for B = Cr, and then cooled to room temperature. The samples of Ba₆[B^{m+}₁Nb₁₂₋₁] Nb₄O₁₂ were synthesized by firing the pellets of mixture in platinum crucible at 1350 ~ 1420°C for 48h in air for B = Ni and in protective atmosphere of Ar for B = Cr. Ti and then cooled to room temperature.

The single crystal of the compounds were prepared by the flux method at higher temperature. The single crystal of the well crystallized compound were selected for EPMA or X-ray analysis with a four-circle diffractonmeter.

The morphology and optical properties were studied by stereomicroscope and polarization microscope.

1.2 Chemical Analyses

Barium, zirconium and niobium of the compounds were analyzed by gravimetric method. Potassium, iron, nickel and chromium were determined by atomic absorption spectrophotometry (AAS) on varian-spectra30A atomic absorption spectrophotometer. Titanium was analyzed by H_2O_2 spectrophotometric method. The contents of the elements in the single crystal were determined by EPMA on JCXA-733 electron probe X-ray microanalyzer.

The solubilities of the compounds in some solvents (HCl, H_2SO_4 , HNO₃ and water etc.) were studied.

1.3 X-ray Diffraction Analysis

The new compounds samples were prepared for XRPD analyses by manually grinding the bulk material to pestle with an agate mortar, followed by sieving to $-325 \text{mesh}(< 45 \mu \text{m})$ particle size. The powder diffraction measurements were performed with a Rigaku D/MAX-RB diffractometer. The experimental conditions were: Cu target, 40kV, 120mA, 0.15mm receiving slit, and curved graphite diffracted monochromatic beam(Cu K $\alpha_1 = 1.5405981 \text{\AA}$).

The powder diffraction data were collected by step scan between 5° and 70° in 2 with a step size of 0.01° and a count time of 5s step. The diffractometer was calibrated using a Si powder standard (SRM 640a a =5,430825Å). The ambient temperature was maintained at 20 ± 1°C. The Rigaku software was used for $K\alpha_2$ peak stripping and the "full width at half maximum middle point" method for determining peak intensities and position.

The resulting peak position was corrected by means of an internal standard (SRM 640a). The patterns were indexed using a PC-version of TREOR-4 program.

	Table 1 Results of Quantitative Analysis of Compounds												
compounds	K ₀ FeNb ₁₀ O ₄₂	K.N14 67Nb15 33O42	$K_6Ti_2Nb_{14}O_{43}$	K ₆ Zr ₂ Nb ₁₄ O ₄₂	$Ba_4Cr_4Nb_{12}O_{42}$	BasNi2 141Nb13 33O42	BaaTi>NboO42						
mole ratio	K: Fe: Nb	K: Ni: Nh	<u>K: T: Nh</u>	K: Z <u>r: Nh</u>	Ba: Cr: Nb	Ba: Ni: Nb	<u>Ba</u> Ti: Nb						
chemicat analyses	5. 98 : 1. 00: 15. 03	1 5, 92: 0, 65: 15, 40 5.	96: t. 99 [.] 14. 02	5. 98- 2. 00: 14. 06	5 6. 02: 3. 98' 12. 01	6, 08: 2, 68: 13, 35	5, 98' 7, 00, 9, 03						
EPMA	6, 02; 1, 00; 15, 01	6, 04: 0, 70: 15, 35 5	91: 1 99: 14, 05	6, 04: 2, 00: 13, 98	3 5, 99= 3, 93* 12, 09	6 06: 2, 68: 13, 36	6, 04: 7, 00: 8-98						
theoretical <u>composition</u>	6:00:1-00:15.00) 6. 00 [.] 0. 67. 15. 33 6.	00 2.00:14 00	6 00: 2, 00: 14, 00) 6, 00: 4, 00: 12, 00	6, 00 2 67, 13, 33	6, 00: 7-00: 9, 00						

Table 1 Results of Quantitative Analysis of Compounds

Table 2 Cell Parameters of some Compounds									
compound	a/Å	c/Å	compound	a/Å	c/Å				
KaCrNb13O42	9. (26(3)	12.068(3)	KoZr2ND14O42	9.1607(9)	t2.1336(8)				
KsFeNb15O42	9. t320(3)	12.0689(3)	B86Cr4Nb12O42	9.030(1)	12 001(5)				
K6Ni0 63Nb13 33O42	9. [34](4)	12.090(6)	BaaN12 61Nb13 33O42	9.040(3)	(2,003(5))				
KaTi2ND14O42	9 1106(5)	12.013(6)	BasT17N40042	9.0527(3)	11 701(5)				

-

张高科等,系列新铌酸盐 A。"" [B,"" Nb₍₂₋₄] Nb₄U₄₂ 的合成及粉晶 X 射线衍射分析

· 199 ·

Table 3	Indexation	of the X-ray	Diffraction	Patterns of	the Series	Compounds
---------	------------	--------------	-------------	-------------	------------	-----------

K _b CrNI	0.3042	K _o FeN.	$b_{12}O_{42}$	K ₂ Nia a N	b15 22042	KATO	vbia0 ₁₂	$K_{b}Zr_{2}N$	b1=042	Ba₅Cr₄	Nh ₁₂ O ₄₂	Ba ₆ Ni ₂ /	7Nb13 33O42	BasToN	byU ₁₂	64
d	$I \neq I_0$	d	$L^* I_0$	d	L/I_0	4	$1 \leq I_0$	<u></u>	$I \neq I_b$	d	I/I_2	d	17 Iu	d	17 I.	
7 92	6	7.9288	17	7.9217	19	7 907	18	7.9434	12	7 893	J	7 897	1			100
6. 05	100	6.0332	60	6. 0455	98	6 021	60	6 0748	76	6 005	J	5 956	2	5. 8895	2	002
										4.756	2	4 761	2	4.7112	1	102
										4.543	4	4. 576	8	4 5277	8	110
4, 271	12	4.2730	29	4. 2780	34	4. 261	33	4, 2897	32	4 250	1	4 26 L	1	4. 2288	8	111
J 955	16	3. 9552	26	3 9552	47	3 948	37	3 9694	42	3. 934	4			J 9242	5	200
3.645	13	3.6420	26	3 6464	32	3. 632	29	3.6585	J2	3 615	50	3.627	43	3 5913	53	112
3 311	19	3. 3080	42	3.3104	38	3 300	41	3. 321 5	35	3. 287	85	3. 297	54	3 2640	74	202
3. 020	68	3.0184	100	3 0234	100	3.008	100	J. 03J6	100	2 993	100	2.995	100	2.9674	100	113
2 991	18	2.9897	49	2 9897	44	2, 983	61	3.0007	41							210
2 901	19	2.9024	50	2.9033	52	2.895	70	2 9118	47	2. 886	87	2.902	58	2.8712	62	211
2.820	20	2 8168	21			2.808	19	2 8352	28	2. 789	25	2.782	19	2. 7584	17	104
2.679	15	2 6782	15	2.6805	14	2.671	13	2 6893	15	2.662	6	2.674	8	2. 6474	8	212
2.636	8	2 6310	19			2.629	34	2 6453	22	2.622	20	2.639	30	2. 6137	24	300
2.518	15	2.5156	19	2. 5211	23	2,509	15	2. 5309	21	2.491	3	2.494	1			114
2.416	4	2. 4156	8	2 4174	22	2.410	17	2. 4239	10							302
2.398	9	2 3994	15	2.4014	11	2 391	13	2.4107	15	2.375	20	2 379	10	2.3552	7	204
2. 283	2	2. 2828	4	2.2839	17	2 278	4	2. 2913	7							220
2, 241	3	2. 2446	5	2.2419	5	2 238	9	2.2517	7	2.231	10	2 247	8	2.2218	12	221
														2.1746	5	310
2 157	3	2, 1587	5	2.1587	11	2 153	8	2, 1658	7	2, 147	40	2 161	20	2.1382	03	311
2, 131	2		-							2.111	4	2 111	7	2 0896	3	222
2,120	-									2 091	1	2.085	5			214
										2 049	3	2.062	5	2.0408	15	312
2 012	36	2 0107	14	2.0132	25	2. 004	15	2.0214	21	1.998	20	1. 981	20	1.9665	12	006
2.012		1 9848	6	- 0100		2.00.	10	1.9924	15							223
1 977	8	1 9779	28	1.9783	24	1.973	2.1	1 9841	20	1.968	25			1.9569	14	400
1 949	21	1 9497	q	1 9537	15	1 941		1 9 590	12	11,700						106
			,			1	-			1. 911	01	1. 923	8	1. 90.11	8	313
1 878	3	1 8780	đ	1 8708	5	1 877	5	1 8861	6	1 861	10			1.8461	9	215
1.840	16	1 8390	16	1 8440	18	1.072	וי	1 8494	16	1.821	20	1 879	17	1 874	12	116
1.870	0	1.8206	13	1 8773	15	1.815	17	1 8770	16	1 808	10	1 797	1	1.02.		224
1. 020	,	1.0200	15	1.0225	15	1.810	12	1102/2	10	1.000	10	1				370
1 703	5	1 2045	8	1 7061	10	1 790	21	1 7007	Q	1 783	5			1 7781	5	יי <u>י</u> זיו
1.795	2	1 27/1	12	1 7756	37	1.759	, ,	1 2815	2 5	1.761	20	1 767	12	1. 1.103	17	714
1.774	2	1,7107	0	1 7365		1.704	,	1.7015		1.708	20	1.107	11	1.7102	15	377
1.700	ر ہ	1. 7052	21	1 7363	0 10	1.734	16	1.7400	20	1.720	19	1-729	10	1.7120	11	.110
(غار،ا 1 220	0 1	1.1257	21	1 (205	ف ن	1. /22	10	1.7912	20	1. 651	10 10	1.720	10	1. 7110	13	216
1.000	2	1 6501	16			1 655	14	1 6657	10	1.6.14	20	1.640	17	1 6375	51	412
1 652	20	1.0375	10	1 6551	37	1.640	14	1.6602	40	1. 6.14	12	1.049	17	1.6321	10	404
1,000	20	1.0556	4.)	1.0551	31	1.049	42	1.0002	40	1.044	7	1 614	7	1-0361	13	315
1 612		1 6120	17	1 6 1 6 6		1 606	(1	1 6317	14	1.011	,	1.014	,			117
1.013	7	1.0120	17	1.0150	0	1.000	12	1.0217	14	. 671	e					117
1 201	-			1 6022						1. 575	3		e	1 6470	0	41J 600
1, 581	2			1.5823	4					1 644		1.584	3	1.00/9	у ,	200
										1.544	4	1 221	4	1. 5354	•	324
										1 520	10	1.531	3	1.5154	14	207
1. 5 09	8	1. 5094	13	1.5105	16	1 503	10	1. 5157	19	1,502	[]	1,498	12			226
										1, 493	12	1. 493	12	1. 4964	8	الالا
1, 493	11			1.4953	16	1 491	10	1.4993	15					1.4818	5	420
													_	1. 4702	6	421
1. 493	11	1.4932	14	1.4953	16				_			1, 485	3	1, 4642	10	217
								1 4900	5	1. 478	15	1. 479	11			108

- -

- -----

第12 巻

					10	- +	•	л			
Table 4	Cell Volume and the	he Sum of the	Ionic	Radii	of th	e A'	' Ca	tions and	d the Cations i	in the Hexagonal	Ring Unit

compound	$Ba_{6}T\iota_{7}Nb_{9}O_{42}$	$Ba_{b}Cr_{4}Nb_{12}O_{42}$	$Ba_{6}N_{12} \circ Nb_{13} \circ O_{42}$	$K_b T_{12} N b_{14} O_{42}$	KsCrNb15O42	KsFeNb:10.2	KaN10 62Nb15 11O42	K6Zr2Nb14O42
V∕ų	836.8	847.5	849 5	863. 5	870.4	871.5	873 6	881.8
Σ//λ	18 51	18.64	18.64	18.66	18, 70	18.73	18.76	18, 88

2 Result and Discussion

2.1 Composition and Chemical Stability

Stereomicroscope analysis and polarization microscope analysis showed that the single crystal of the compounds is transparent with hexagon-thin schistose shape. They are uniaxial crystal with negative sign.

The compounds can be dissolved in the hot mixture of $(NH_4)_2SO_4$ and concentrated H_2SO_4 or in melt NaOH or KOH. Results of quantitative analyses of the compounds are showed in Table 1. The results of chemical analysis are in good agreement with the theoretical elemental compositions of compounds, and were confirmed by EPMA.

2.2 XRD Analysis

The crystal structures of the compounds were determined using single crystal X-ray diffraction data. The results have been reported^[12]. The compounds crystallized in the hexagonal system with space group $P6_3 / mcm(193)$ and z = 1.

The values of the cell parameter in the $P6_1 / mcm$ (193) as obtained after a leasI-square refinements are given in Table 2. The XRPD data of the compounds A_{6}^{n+} [$B_{x}^{m+}Nb_{12-x}$] Nb₄O₄₂ (A = K, Ba, B = Ni, Cr, Fe, Ti and $Zr^{[13]}$) are shown in Table 3. It is found, by comparing the XRPD data of these compounds, that these patterns are very similar. For the compounds of A = K, the peak heights and positions of the patterns show very slightly difference. For the compounds of A = Ba. The *d*-values of the patterns are slightly smaller than that of the compounds of A = K. The (002) peak height of the compounds of A = Ba is obviously lower than that of the compounds of A = K. It is clear that the composition of the compounds has important impact on these changes. All of the peaks of XRPD patterns of these compounds were well indexed according to the systematic absences of the $P6_3 / mcm$ space group obtained by the result of X-ray single crystal diffraction^[12]. Those facts suggest that these compounds are isostructural with K6CrNb15O42.

These compounds formula may be described by $A_n^* [B_x^{m*}Nb_{12-x}] Nb_4O_{42}$, where $A^{n*} = K^*$, Ba^{2*} and $B^{m*} = Ni^{2*}$, Fe^{3*} , Cr^{3*} , Ti^{4*} , Zr^{4*} etc. Generally, according to the following formula: x = (6n-4)/(5-1)

n), x = 2/3, 1 and 2 for n = 1, m = 2, 3 and 4; n = 2, m = 2 and 3, so x = 8/3 and 4. However, the mole ratio of the B_n^{n+} ions in the structure is with x = 7(<8 calculated) if $A_n^{-} = Ba^{2-}$, $B^{m+} = Ti^{4+}$, Zr^{4+} and Sn^{4+} here, The mixed valence of niobium Nb (V)/ Nb (W) exists in the structure of $Ba_6[Ti_7Nb_5]$ Nb₆O₄₂. A^{n+} ions are located at tunnels with 12 O-neighbors, the atoms of Nb and B are 6 coordinated.

The unit cell volume of these compounds depends on the sum of the ionic radii of the A^{n+} cations and the cations in the hexagonal ring unit (given in Table 4).

3 Conclusion

The series compounds $A_{6}^{n-r}[B_{7}^{n-r}Nb_{12}]$ Nb₄O₄₂ were synthesized. Their lattice parameters were gained and X-ray patterns have been well indexed. The series compounds are with the K₆CrNb₁₅O₄₂ type structure.

References

- [1] Katz L., Megan H. D. Acta Crystallur, 1967, 22, 639.
- [2] Nengaokar R. R., Cory W. W., Oliver J. R., Ewbank M. D., Halt W. F. Opt. Eng., 1987, 26(5), 392.
- [3] Amodei J. J., Stealer D. L., Stephens A. W. Appl. Phys. Lett., 1971, 68, 507.
- [4] Megumi K., Nagatsuma N., Kashiwada K., Furuhata Y. J. Mater. Sci., 1976, 11, 1583.
- [5] Neugaonkar R. R., Netsen J. G., Otiver J. R. Mater. Res. Bull., 1992, 27, 677.
- [6] Jacobson A. J., Jack Johnson W., Lewandowki J. T. Inorg. Chem., 1985, 24, 3727.
- [7] Dion M., Gane M., Tournou M. Mater. Res. Bull., 1981, 16, 1429.
- [8] Cushing B. L., Wiley J. B. Mater. Res. Bull., 1999, 32, 559.
- [9] Fatlon G. D., Gatehouse B. M., Goudda L. J. Solid. State. Chem., 1986, 61, 181.
- [10] Kumada N., Kinomura N. Mater. Res. Bull., 1997, 32, 559.
- [11] Gasperin M. Acta Crystallogr Sect B38, 1982, 2024.
- [12] Wu B., Zha C., Yuan R. Zeitschrift für Kristallographie, 1992, 205, 56.
- [13] FANG Liang(方 亮)、ZHANG Hui(张 辉)、WU Bo-Lin (吳伯麟) Wuji Huaxue Xuebao(Chinese J. Inorg. Chem.)、 1999, 15, 118.