Vol. 18, No. 2 Feb., 2002

## (開与 β- 丙氨酸配合物 { [La<sub>2</sub>(β-ala)<sub>6</sub>(H<sub>2</sub>O)<sub>4</sub>](ClO<sub>4</sub>)<sub>6</sub>・H<sub>2</sub>O }<sub>n</sub> 的合成及晶体结构

马录芳 梁福沛\* 覃海错 张漫波 胡瑞祥 (广西师范大学化学系,桂林 541004)

郁开北

(中国科学院成都有机所分析测试中心、成都 610041)

关键词: 镧配合物 β-丙氨酸 晶体结构 分类号: 0614.331

稀土在羊毛染色剂中用做助染剂<sup>[1]</sup>、在钙蛋白 中用做钙离子的探针<sup>[1]</sup>得到广泛的应用,稀土的生 物效应是以其与各种生物配体如氨基酸、肽、蛋白 质、核酸等生物分子的作用为基础的,因此研究稀土 氨基酸配合物的单晶结构对于探讨稀土离子与生物 体的作用很有意义、稀土与有关  $\alpha$ -丙氨酸的摩尔 比为  $I: I^{[3-4]}$ 和  $I: 2^{[3-7]}$ 类型的配合物的单晶结构已 有报道,而有关稀土  $\beta$ -丙氨酸配合物的单晶结构已 有报道,而有关稀土  $\beta$ -丙氨酸配合物的单晶结构 还未见报道、本文合成了高氯酸镧与  $\beta$ -丙氨酸的 I: 3 型的配合物,并测定了其晶体结构。

- 1 实验部分
- I.1 试剂和仪器

氧化镧纯度为 99.95% (上海试剂厂)、用高氯 酸将其全部溶解, 然后小火缓慢蒸除过量的高氯酸, 配制成高氯酸镧贮备溶液待用。β-丙氨酸为生化试 剂 (上海试剂三厂),其它试剂均为分析纯。美国 PE-2400 元素分析仪, Simens P4 四圆衍射仪。

1.2 配合物的合成

将摩尔比为 1:3 的高氯酸镧水溶液与 β-丙氨 酸水溶液混合,用稀高氯酸溶液调其 pH 值到 3.5, 加热浓缩后在室温下挥发、三个月后得到无色棱状 晶体。

#### 1.3 晶体结构测定

选取大小为 0.52 × 0.48 × 0.32mm<sup>3</sup> 的单晶置 于 Siemens P4 衍射仪上,用石墨单色化的 Mo Ka 射 线 ( $\lambda = 0.071073$ nm)在 1.62° <  $\theta$  < 25.02°范围内 以  $\omega$ -2 $\theta$ 扫描方式于 293(2)K下共收集到 9796 个 衍射点,其中 8899 个( $F_0 > 4\sigma (F_0)$ )可观测点用于 结构修正,晶体结构由直接法解出,有两个高氯酸根 (Cl5,Cl6)在晶体结构中呈无序分布。对非氢原子坐 标和各向异性温度因子进行了全矩阵最小二乘法精 修,最终偏差因子  $R = 0.0365, R_* = 0.0974$ 。所有计 算均在 IBM586/PC 机上用 Simens SHELXTL97 程 序包进行。

### 2 结果和讨论

#### 2.1 配合物的组成

配合物元素分析结果(括号内为计算值,%):C 14.21(14.42),H 3.58(3.47),N 5.58(5.63),表明 配合物组成为[La<sub>2</sub>(β-ala)<sub>b</sub>(H<sub>2</sub>O)<sub>4</sub>](ClO<sub>4</sub>)<sub>b</sub>·H<sub>2</sub>O。

#### 2.2 晶体结构

晶体属三斜晶系, P1空间群。晶胞参数 a = 0,946(1) nm, b = 1,2917(1) nm, c = 2,1726(3) nm,  $\alpha$  = 76,79(1)°,  $\beta$  = 80,85(1)°,  $\gamma$  = 83,35(1)°, V = 2,5429(5) nm<sup>3</sup>, Z = 2, D<sub>e</sub> = 1,958g · em<sup>-3</sup>。

所有非氢原子坐标和热参数列于表 I、部分键

----

收稿日期:2001-06-14。收修改稿日期.2001-09-18。

广西自然科学基金资助项目(No. 佳自 9912044)。

<sup>\*</sup> 通讯联系人。E-mail: xsm010@ 263. net

第一作者:马录芳,男,28岁,硕士;研究方向:配位化学。

维普资讯 http://www.cqvip.com

第18卷

| 表 [ 非氢原子坐标及热参数  |            |             |              |          |          |                |              |               |                     |  |  |
|-----------------|------------|-------------|--------------|----------|----------|----------------|--------------|---------------|---------------------|--|--|
| Table 1         | Nonhydrogo | en Atomic C | oordinations | (×104)an | d Equiva | lent Isotropic | Temperatur   | re Factors (1 | $m^2 \times 10^5$ ) |  |  |
| atoni           | х          | γ           | z            | U(eq)    | atom     | د              | <u>، ، ،</u> | z             | U(eq)               |  |  |
| La(1)           | 2781(1)    | 10049(11    | 83(1)        | 22(1)    | La(2)    | 2209(1)        | 4907(1)      | 4982(1)       | 24(1)               |  |  |
| 0(1)            | 2934(41    | 10087(3)    | 1267(2)      | 38(1)    | 012)     | 5055(3)        | 9944(3)      | 712(2)        | 32(1)               |  |  |
| 0(3)            | 3559(4)    | 11892(3)    | -23(2)       | 32(1)    | 0(4)     | 5940(4)        | 1176513)     | -280(2)       | 38(1)               |  |  |
| 015)            | 585(4)     | 11103(3)    | 428(2)       | 37(1)    | 016)     | -1716(4)       | 1085514)     | 576(2)        | 48(1)               |  |  |
| $\Theta(7)$     | 1132(4)    | 8661(3)     | 884(2)       | 40(11    | 0(8)     | 1964(5)        | 11446(3)     | - 928(2)      | 43(1)               |  |  |
| 0(9)            | 1969(4)    | 12874(3)    | 5181(2)      | 40(1)    | Ō(10}    | -104(4)        | 1379613)     | 5129(2)       | 36(1)               |  |  |
| 01111           | 1561(4)    | 14801(3)    | 3904(2)      | 38(1)    | 0(12)    | - 797(4)       | 1523713)     | 3933(2)       | 43(1)               |  |  |
| 0(13)           | 3350(4)    | 16144(3)    | 5405(2)      | 46(1)    | 0(14)    | 556514)        | 15719(3)     | 5627(2)       | 38(1)               |  |  |
| 0(15)           | 3713(4)    | 13773(4)    | 5865(2)      | 42(1)    | Ū(16)    | 313415)        | 1648914)     | 4089(2)       | 47(1)               |  |  |
| 0117)           | 3435(6)    | 874914)     | 3878(2)      | 69(1)    | U(18)    | 325416>        | 9331(5)      | 4819(2)       | 91(2)               |  |  |
| 0+19)           | 5266(5)    | 828214)     | 4508121      | 60(1)    | 0(20)    | 491716>        | 1002014)     | 3944(3)       | 91(2)               |  |  |
| 01211           | 1976(5)    | 391814)     | -1277(2)     | 71(1)    | O(22)    | 147916)        | 486215)      | - 451(3)      | 87(2)               |  |  |
| 0(23)           | 186(6)     | 343714)     | -432(2)      | 70(1)    | 0(24)    | -187(6)        | 499314)      | -1160(3)      | 82(2)               |  |  |
| 0125)           | 8104(6)    | 840815)     | 2261(2)      | 82(2)    | Ð(26)    | 997916)        | 947716)      | 2051(3)       | 96(2)               |  |  |
| 01271           | 9364 (9)   | 8501(6)     | 3070(3)      | 121131   | O(28)    | 7871(7)        | 9902(6)      | 2673(4)       | 117(2)              |  |  |
| O(29)           | 4356(9)    | 264716)     | 120313}      | 11913}   | O(30)    | 493818)        | 279115)      | 2157(3)       | 105(2)              |  |  |
| 0(31)           | 5648(7)    | 4041(5)     | 1253(3)      | 10512}   | 0(32)    | 326019)        | 400917}      | 1669(5)       | 178(4)              |  |  |
| 0(33)           | 3409(16)   | 746919)     | 262517)      | 18417)   | Ð(34)    | 4834114)       | 59021101     | 2877(5)       | 145(5)              |  |  |
| 0(35)           | 35231161   | 61701131    | 2044187      | 222(10)  | 0(36)    | 54691121       | 7138(11)     | 1950(5)       | 156(5)              |  |  |
| 01371           | 315(15)    | 12201(17)   | 3877(5)      | 14816)   | 0(38)    | 3691141        | 10750(8)     | 3419(9)       | 172(7)              |  |  |
| 0(39)           | - 909(8)   | 12329(10)   | 302316>      | 98135    | O(40)    | 1560(9)        | 12216(12)    | 2876(51       | 162(6)              |  |  |
| N(1)            | 278415)    | 9657(4)     | 258912)      | 4711)    | N(2)     | 723615)        | 13606(4)     | -875(3)       | 55(1)               |  |  |
| N(3)            | 1293(5)    | 1289914)    | 85112}       | 48(1)    | N(4)     | 1953(5)        | 10680(4)     | 5735(2)       | 43(1)               |  |  |
| N(5)            | -1870(5)   | 15969(5)    | 279712)      | 6312)    | N(6)     | 617616)        | 1650215)     | 6681(3)       | 66(2)               |  |  |
| C(1)            | 4273(5)    | 10020(4)    | 1228(2)      | 25(1)    | C12)     | 498416)        | 10021(5)     | 1800(2)       | 39(1)               |  |  |
| C{3}            | 3961+7)    | 10357(5)    | 235513)      | 5012)    | C14)     | 4758(5)        | 12282(4)     | - 194(2)      | 27(1)               |  |  |
| C(5)            | 4771(6)    | 13472(4)    | -32613)      | 37(1)    | C(6)     | 6245(6)        | 13842(5)     | - 331(3)      | 48(2)               |  |  |
| C{7}            | ~ 66815)   | 11257(4)    | 67912>       | 28(1)    | C(8)     | -9716)         | 12005(5)     | 1141(3)       | 41(1)               |  |  |
| C(9)            | 34917)     | 1226415)    | 1370(3)      | 4612)    | C(10)    | 63215)         | 12912(4)     | 5221(2)       | 29(1)               |  |  |
| C(11)           | - 122(6)   | 11912(4)    | 5393(3)      | 39(1)    | C(12)    | 841(7)         | 10918(4)     | 5312(3)       | 43(1)               |  |  |
| C(13)           | 437(5)     | 15032(4)    | 3650(2)      | 30(1)    | C(14)    | 54316)         | 15066(6)     | 2943(3)       | 50(2)               |  |  |
| C115)           | ÷ 289(8)   | 15992(7)    | 2590(3)      | 75(2)    | C(161    | 4389(5)        | 16274(4)     | 5663(2)       | 26(1)               |  |  |
| C(17)           | 4190(6)    | 17139(5)    | 603513)      | 44(1)    | C1181    | 5535(7)        | 17404(5)     | 6228(3)       | 50(2)               |  |  |
| C1(1)           | 4208(2)    | 9122(1)     | 4287(1)      | 41(1)    | Cl(2)    | 88812)         | 4325(1)      | - 835(1)      | 47{1}               |  |  |
| C1(3)           | 8848(2)    | 9065(2)     | 252111)      | 57(1)    | CI(4)    | 4542(2)        | 3383(1)      | 1577(1)       | 58(1)               |  |  |
| CI15}           | 4312(6)    | 6678(5)     | 2375+3)      | 40(1)    | Cl(6)    | 331(7)         | 11871(8)     | 3302(4)       | 61(2)               |  |  |
| Cl15')          | 4108(9)    | 6955(6)     | 2349(4)      | 7913)    | Cl(6')   | 370(7)         | 11705(7)     | 343914}       | 56(2)               |  |  |
| 0(33')          | 2959(16)   | 7155(13)    | 2819(6)      | 184(7)   | 0(34')   | 5382(14)       | 7263(11)     | 248717}       | 14515>              |  |  |
| 0(35')          | 4260(17)   | 5861(7)     | 2340(9)      | 222(10)  | O(36')   | 3812(15)       | 7559(12)     | 1747(5)       | 15615)              |  |  |
| 0(37')          | 1259(15)   | 12309(16)   | 3657(7)      | 148(6)   | U(38')   | 1077(15)       | 10695(9)     | 3404(10)      | 17217)              |  |  |
| O( <b>39'</b> ) | -916(8)    | 11577(9)    | 3866(5)      | 9813)    | 0(401)   | 52(15)         | 12246(13)    | 2828(4)       | 16216>              |  |  |
| 0(41)           | 7118(11)   | 4204(7)     | 2459(3)      | 153(4)   |          |                |              |               |                     |  |  |

长和键角列于表 2, 配合物的晶体结构和配位多面体示于图 1 和图 2。

由图 1 可见,配合物为无限链状分子,其结构式 可以表示为 { [La<sub>2</sub>(β-ala)<sub>6</sub>(H<sub>2</sub>O)<sub>4</sub>] (ClO<sub>4</sub>)<sub>6</sub>·H<sub>2</sub>O)<sub>1</sub>, 晶体中 { La<sub>2</sub>(β-ala)<sub>6</sub>(H<sub>2</sub>O)<sub>4</sub>] (ClO<sub>4</sub>)<sub>6</sub>·H<sub>2</sub>O 构成了双 聚结构单元,每一单元中含有两个 La (III)离子,同时 又含有六个 β-丙氨酸,根据配位情况 β-丙氨酸可 分为三类: 第一类 β-丙氨酸的羧基以螯合桥式配 位,其中一个氧原子只与一个 La (m)离子配位,而另 一氧原子同时与同一单元的两个 La (m)离子配位而 形成三原子桥氧键,其中单配位的 La-O 键键长为 0.2592nm,桥连的 La-O 键键长为 0.2691nm;第二类 β-丙氨酸的羧基中的两个氧原子分别与同一单元 中的两个 La (m)离子配位: 第三类 β-丙氨酸通过羧

· 207 ·

马录芳等: 锎与 β- 丙氨酸配合物 { [La<sub>2</sub>(β-ala<sub>1</sub>。(H<sub>2</sub>O)<sub>4</sub>] (ClO<sub>4</sub>)。·H<sub>2</sub>O), 的合成及晶体结构\_\_\_\_\_\_

| 表 2 部分键长和键角                                     |            |                          |            |                        |            |  |  |  |  |  |  |  |
|-------------------------------------------------|------------|--------------------------|------------|------------------------|------------|--|--|--|--|--|--|--|
| Table 2 Selected Bond Lengths(nm) and Angles(°) |            |                          |            |                        |            |  |  |  |  |  |  |  |
| La(1)-0(5)                                      | 0 2459(31  | $L_{a}(1) - O(3)$        | 0.2522(3)  | La(11-0(1)             | 0.2610(3)  |  |  |  |  |  |  |  |
| La(1) - O(7)                                    | 0 2652(4)  | $L_{a}(1).0(8)$          | 0.2661(4)  | $L_{1}(1  \cdot O(2))$ | 0.2702(3)  |  |  |  |  |  |  |  |
| La(1) - C(1)                                    | 0,3040(5)  | La(21.0(13))             | 0.2439(4)  | La(2)-0(11)            | 0.2551(31  |  |  |  |  |  |  |  |
| $L_{a}(2) - O(9)$                               | 0.2592(4)  | La(21-0(16)              | 0.2601(4)  | $L_{a}(2) = O(15)$     | 0.2637(41  |  |  |  |  |  |  |  |
| La(2)-O(10)                                     | 0 2691(4)  | 0(1)-C(1)                | 0.1251(6)  | O(2)-C(1)              | 0 1257(5)  |  |  |  |  |  |  |  |
| O(6)-C(7)                                       | 0.1243(6)  | D(A)-C(10)               | 0.1250(6)  | O(13)-C(16)            | 0,1251(6)  |  |  |  |  |  |  |  |
| O(3)-C(4)                                       | 0.1261(6)  | O(4)-C(4)                | 0 1244(6)  | $O(5) \cdot C(7)$      | U. 1237(61 |  |  |  |  |  |  |  |
| N(1)-C(3)                                       | 0.1470(8)  | N(2)-C(6)                | 0 1453(7)  | N(4)-C(12)             | 0.1465(71  |  |  |  |  |  |  |  |
| O(5)-La $(1)$ -O $(3)$                          | 75.22(12)  | O(5)-La(1)-O(1)          | 74 82(12)  | O(3)-La(1)-O(1)        | 78.03(12)  |  |  |  |  |  |  |  |
| O(5)-La $(11-O(7))$                             | 74.32(12)  | 0(3)-La(1)-O(7)          | 139.64(12) | O(1)-La $(1)$ -O $(7)$ | 68. 90(13) |  |  |  |  |  |  |  |
| O(5)-La(11- $O(8)$                              | 71.11(13)  | 0(31-La(11-018)          | 66.69(13)  | O(1)-La $(1)$ -O $(8)$ | 135.75(13) |  |  |  |  |  |  |  |
| O(71-La(1)-O(8)                                 | 125.23(14) | O(5)-La $(1)$ - $O(2)$   | 117.34(11) | O(3) La $(1)$ $O(2)$   | 69.75(11)  |  |  |  |  |  |  |  |
| O(1)-La $(1)$ -O $(2)$                          | 48.46(10)  | O(7)-La(11-012)          | 102.18(12) | O(8) La $(1)$ $O(2)$   | 131 19(12) |  |  |  |  |  |  |  |
| 0(13)-La(2)-0(9)                                | 138.94(13) | O(11)-La(2)-O(9)         | 80.34(13)  | O(13)-La(2)-O(16)      | 68.12(15)  |  |  |  |  |  |  |  |
| O(11)-La(2)-O(16)                               | 68.81(14)  | O(9)-La(2)- $O(16)$      | 140.83(14) | O(13)-La(2)-O(15)      | 72.18(14)  |  |  |  |  |  |  |  |
| O(11)-La(2)+O(15)                               | 139.05(13) | 0(9)-La(2)-0(15)         | 66.83(13)  | O(16)-La(2)-O(15)      | 124 73(15) |  |  |  |  |  |  |  |
| 0{13]-La(21-0(10)                               | 145 28(13) | O(11)-La $(2)$ -O $(10)$ | 68.92(12)  | O(9)-La(2)-O(10)       | 48.64(11)  |  |  |  |  |  |  |  |
| 0(16)-La(21-0110)                               | 131.34(13) | 0(15) - La(2) - O(10)    | 103.01(13) |                        |            |  |  |  |  |  |  |  |



图 1 配合物分子结构 Fig. 1 Molecular structure of complex [[La<sub>2</sub>(β-ala)<sub>6</sub>(H<sub>2</sub>O),](ClO<sub>4</sub>)<sub>6</sub>·H<sub>2</sub>O)<sub>n</sub>



图 2 配合物 [[La<sub>2</sub>( $\beta$ -ala)<sub>6</sub>(H<sub>2</sub>O)<sub>4</sub>](ClO<sub>4</sub>)<sub>6</sub>·H<sub>2</sub>O}<sub>6</sub> 的配位多面体 Fig. 2 Coordination polyhedron of complex [[La<sub>2</sub>( $\beta$ -ala)<sub>6</sub>(H<sub>2</sub>O)<sub>4</sub>](ClO<sub>4</sub>)<sub>6</sub>·H<sub>2</sub>O],

基桥连相邻单元的相邻两个 La (III离子而形成一维

无限长链结构,这与文献<sup>10</sup>中所报道的[[Sm<sub>2</sub>(Gly)。 (H<sub>2</sub>O),](ClO<sub>4</sub>)。(H<sub>2</sub>O)<sub>5</sub>]。结构类似,而与文献<sup>[3-7]</sup>

中所报道的 α-丙氨酸稀土配合物结构均不相同、

后者所报道的稀土离子的配位数都为8,且不同的

稀土离子之间均由羧基桥连而无螯合-三齿配位桥

连方式。配合物中 La1 和 La2 分别形成两条相互交

错的一维无限长链, ClO4-没有参与配位, 它与未配

位的水分子一起存在于 La1 链与 La2 链之间, 并与

相应的 β-丙氨酸供给氢的氮原子形成氢键把上下

两层链相连形成网状结构、从而增加了晶体的稳定

性。每个 La (III)离子除了与来自六个 β-丙氨酸的七

个氧配位外,同时还与两个水分子配位,所以镧的配

组成和结构有以下几类:(1)摩尔比为1:3的配合物

阳离子的结构式为 { [Ln<sub>2</sub>(ala)<sub>6</sub>(H<sub>2</sub>O)<sub>4</sub>]<sup>i+</sup> },, Ln 为稀

土离子,链状结构。(2)摩尔比为1:2的配合物阳离

子的结构式为[Ln2(ala)4(H2O)s]\*\*, 双核结构[5~7]。

(3) 摩尔比为 1:1 的配合物阳离子结构式为

[Ln(ala)(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup>, 链状结构<sup>[3,4]</sup>。稀土与丙氨酸的

配合物为什么会有这样不同的结构和组成、其详细

的反应机理还有待进一步的探讨。

已报道的稀土与丙氨酸不同摩尔比的配合物的

位数为9、形成三帽三角棱柱配位多面体。

第18卷

参考文献

- FANG Jian-Yun(方建云), JIN Tian-Zhu(金天柱), XU Guang-Xian(徐光宪), XIE Jun(谢 军) Zhongguo Xitu Xuebao(J. Chin. Rare Earth Soc.), 1987, 5(4), 47.
- [2] Reuben J. Handbook on the Physics and Chemistry of Rare Earths, 1979. 3, 515.
- [3] Glowiak T., Legendziewicz J., Dao C. N. et al J. Less-Common Metals, 1991, 168, 237.
- [4] Li Jun-Ran(李俊然), ZHOU Li-Ping(周丽萍), JIN Tian-Zhu(金天社) Zhongguo Yitu Xuebao(J. Chin. Rare, Earth. Soc.), 1997, 15(2), 97.
- [5] JIN Tian-Zhu(金天柱)、GAO Song(高 松)、HUANG Chun-Hui(黄春辉) Zhongguo Xitu Xuebao(J. Chun. Rare Earth Soc.)、1987,5(3),1.
- [6] Zeng H. D., Pan K. Z. J. Struct. Chem., 1992, 11(5), 393.
- [7] Dao C. N., Glowiak T., Huskowska E. et al J. Less. Common. Met., 1988, 136, 339.
- [8] MENG Qing-Bo(孟庆波), LIU Jian-Xuet柳建学), WANG Zeng-Lin(王增林) Gaodeng Xuexiao Huaxue Xuebao (Chem. J. Chin. Univ.), 1993, 14(10), 1333.
- [9] MA Ai-Zeng(马爱增)、LI Lai-Ming(李来名), LIN Yong-Hua(林永华) Wuji Huaxue Xuebao (Chinese J. Morg. Chem.), 1993, 9(4), 401.

# Synthesis and Structure Determination of Lanthanum Complex with $\beta$ -Alanine {[La<sub>2</sub>( $\beta$ -ala)<sub>6</sub>(H<sub>2</sub>O)<sub>4</sub>](ClO<sub>4</sub>)<sub>6</sub> · H<sub>2</sub>O}<sub>n</sub>

MA Lu-Fang LIANG Fu-Pei\* QIN Hai-Cuo ZHANG Man-Bo HU Rui-Xiang

(Department of Chemistry, Guangxi Normal University, Guilin 541004)

YU Kai-Bei

(Chengdu Center of Analysis and Measurement, Academia Sinica, Chengdu 610041)

The complex,  $\{[La_2(\beta-ala)_{6}(H_2O)_{4}](ClO_{4})_{6} \cdot H_2O\}_{n}$ , was synthesized in aqueous solution and its crystal structure was determined by X-ray diffraction method. The crystal is triclinic with space group of  $\overline{P1}$ . The cell parameters are a = 0.946(1) nm, b = 1.2917(1) nm, c = 2.1726(3) nm.  $\alpha = 76.79(1)^{\circ}$ ,  $\beta = 80.85(1)^{\circ}$ ,  $\gamma = 83.35(1)^{\circ}$ , V = 2.5429(5) nm<sup>3</sup>, Z = 2,  $D_c = 1.958g \cdot cm^{-3}$ . The complex is an one-dimensional infinite chain. The coordination number of lanthanum ion is nine, forming a distorted tricapped trigonal prism.

Keywords: Ianthanum complex  $\beta$ -alanine crystal structure