Vol. 18, No. 4 Apr., 2002

# 簇合物 $C_{0_3}(CO)_7(\mu_3-S)[\mu, \eta^2-CNP(S)(C_6H_4OCH_3)OC(Ph)CH]$ 和 $C_{0_3}(CO)_7(\mu_3-S)[\mu, \eta^2-SCNC(CH_3)_2P(S)(Cl)N(Ph)]$ 的合成与晶体结构

# 关 敏 刘树堂\* 吴秉芳 于世泳

(内蒙古大学化学化工学院,呼和浩特 010021)

用 Co<sub>2</sub>(CO)<sub>8</sub> 分别与两个杂环配体 Ċ(S)NHP(S)(C<sub>6</sub>H<sub>4</sub>OCH<sub>3</sub>)OC(Ph) ĊH (L<sub>1</sub>)和 Ċ(SJNHC(CH<sub>3</sub>)<sub>2</sub>P(S)(Cl)N(Ph) (L<sub>2</sub>)反应. 合成两个新的三核钴羰基硫簇合物 Co<sub>3</sub>(CO)<sub>1</sub>( $\mu_3$ -S)[ $\mu$ ,  $\eta^2$ -CNP(S)(C<sub>6</sub>H<sub>4</sub>OCH<sub>3</sub>)OC(Ph)CH](I)和 Co<sub>3</sub>(CO)<sub>1</sub>( $\mu^3$ -S)[ $\mu$ ,  $\eta^2$ -SCNC (CH<sub>3</sub>)<sub>2</sub>P(S)(Cl)N(Ph)](I)。用元素分析、IR, 'H NMR、''P NMR 及 MS 谱表征了它们的结构、同时用 X 射线衍射法测定了它们 的晶体分子结构,二者属于三斜晶系、PI 空间群、I的晶胞参数为: a = 0.84768(1) nm, b = 1.19049(3) nm, c = 1.43639(1) nm,  $a = 86.926(1)^\circ$ ,  $\beta = 81.601(3)^\circ$ ,  $\gamma = 88.535(2)^\circ$ . V = 1.4318(5) nm<sup>3</sup>, Z = 2.  $D_o = 1.641g \cdot \text{cm}^{-3}$ , F(000) = 716,  $\mu = 1.893$  mm<sup>-+</sup>, R = 0.0602,  $R_v = 0.1515$ 。 II的晶胞参数为: a = 1.2050(2) nm, b = 1.2448(2) nm, c = 0.8951(2) nm,  $a = 97.49(1)^\circ$ ,  $\beta = 93.552$ (4)°,  $\gamma = 108.432(3)^\circ$ , V = 1.2554(3) nm<sup>3</sup>, Z = 2,  $D_c = 1.841g \cdot \text{cm}^{-3}$ , F(000) = 690,  $\mu = 2.419$  mm<sup>-+</sup>, R = 0.0423,  $R_v = 0.1075$ 。1 和 II的分子骨架 Co<sub>3</sub>S 为三角锥构型, S 作为面析基配体, 所有 CO 作为端基配体与三个 Co 原子成键。I中含有 CoCoCN 四元环组 件、II中含有 CoCoSCN 五元环组件。

# 关键词: 钴羰基硫簇合物 合成 晶体结构 分类号: 0614.81

过渡金属羰基化合物与各种含 C = S 基团的有 机化合物反应可以得到不同配位方式和多种立体结 构的金属羰基硫簇合物<sup>[1-6]</sup>。我们曾用铁、钴羰基化 合物与含 C = S 基团的化合物反应,得到了一些有 意义的结果<sup>[7, H]</sup>。本文用 Co<sub>2</sub>(CO)<sub>8</sub> 分别与两个含 C = S 基团的杂环有机前配体 L<sub>1</sub>、L<sub>2</sub> 反应,得到两个新的 三核钴羰基硫簇合物 Co<sub>3</sub>(CO)<sub>7</sub>( $\mu$ o-S)[ $\mu$ ,  $\eta$ <sup>2</sup>-C<sup>•</sup>N<sup>•</sup>P (S)(C<sub>6</sub>H<sub>4</sub>OCH<sub>3</sub>)OC(Ph)CH](1)和 Co<sub>3</sub>(CO)<sub>7</sub>( $\mu$ o-S) [ $\mu$ ,  $\eta$ <sup>2</sup>-S<sup>•</sup>CN<sup>•</sup>C(CH<sub>3</sub>)<sub>2</sub>P(S)(Cl)N(Ph)](I)(\*代表 配位原子)。通过元素分析,IR,<sup>1</sup>H NMR,<sup>31</sup>P NMR, MS 谱以及 X 射线晶体结构测定,证实它们的分子 骨架 Co<sub>3</sub>S 为三角锥构型,S原子作为面桥基配体与 三个钴原子成键,所有 CO 配体采取端基配位。I分 子中含有 CoCoCN 四元环组件,即双齿配体 C<sup>•</sup>N<sup>•</sup>P 子骨架中的两个 Co 原子成键。Ⅱ分子中含有 CoCoSCN 五元环组件、即双齿配体 S<sup>•</sup>CN<sup>•</sup>C(CH<sub>3</sub>)<sub>2</sub>P (S)(Cl)N(Ph)通过 S<sup>•</sup>和 N<sup>•</sup>原子与分子骨架中的两 个 Co 原子成键。在簇合物 I和 II中、Co<sub>3</sub>S 三角锥的 Co<sub>3</sub> 平面不是等边三角形,三个 Co 原子的配位环境 不同。

# 1 实验部分

# 1.1 仪器和试剂

Perkin-Elmer2400 型元素分析仪, NEXUS-670 FT 型红外光谱仪(CH<sub>2</sub>Cl<sub>2</sub> 作溶剂), Bruker-AC400 型 核磁共振仪(CDCl3 为溶剂, TMS 为内标、<sup>31</sup>P NMR 用 85% H<sub>3</sub>PO<sub>4</sub> 作外标), ZAB-HS 型质谱仪(FAB 法), Rigaku RAXIS RAPID IP 型面探测仪和 XT<sub>4</sub> 型 显微熔点仪。

Co<sub>2</sub>(CO)<sub>8</sub>由中科院兰州化学物理研究所提供、

收稿日期:2001-06-29。收移改稿日期:2001-12-30。 国家自然科学基金资助项目(No. 29861001)。

<sup>\*</sup>通讯联系人。E-mail: celtckr@ imu. edu. en

第一作者;关 敏,女,26岁,硕士;研究方向;过渡金属原子族化学。

· 352 ·

配体 C(S) NHP(S) (C<sub>6</sub>H<sub>4</sub>OCH<sub>3</sub>) OC(Ph) CH(L<sub>1</sub>) 和 C(S) NHC(CH<sub>3</sub>) <sub>2</sub>P(S) (Cl) N(Ph) (L<sub>2</sub>) 分别按文 献 <sup>[9,10]</sup>方法合成, 柱层析硅胶(100~200 目, 青岛海 洋化工厂产品), 所有溶剂按常规方法脱水提纯, 所 有反应和操作均用 Schlenk 技术在惰性气体保护下 进行。

1.2 标题簇合物 I和 II的合成

1.2.1 I的合成

向 100mL Schlenk 瓶中加入 0. 340g(1. 0mmol) Co<sub>2</sub>(CO)<sub>4</sub>和 0. 170g(0. 5mmol)配体 L<sub>1</sub> 及 30mL 苯溶 剂,于 36~38℃不断搅拌下反应 24h,然后减压浓 缩,直接上硅胶层析柱(400×15mm)分离,用体积比 为 1:1 石油醚/苯混合溶剂洗脱、适当浓缩收集液, 在 - 18℃下重结晶,得到黑色晶体 I。

1.2.2 Ⅱ的合成

向 100mL Schlenk 瓶中加入 0.340g(1.0mmol) Co<sub>2</sub>(CO)<sub>8</sub> 和 0.145g(0.5mmol)配体 L<sub>2</sub> 及 30mL 苯溶 剂,于 42~44℃不断搅拌下反应 24h,经硅胶层析柱 (400×15mm)分离,用体积比为 5:1 石油醚/苯混 合溶剂洗脱,收集液浓缩后,在-18℃下重结晶,得 到黑色晶体 II。

I和 II的物理性质,质谱和元素分析结果见表 1, IR 和 <sup>1</sup>H NMR, <sup>31</sup>P NMR 数据见表 2。

## 1.3 晶体结构测定

簇合物 I, 选取 0.50×0.30×0.25mm 的黑色 柱状晶体, 用 Rigaku RAXIS RAPID IP 面探测仪收 集数据。石墨单色化 Mo Kα 射线(λ=0.071073nm), 以回摆法扫描方式, 温度 293(2)K,在 2.43° < θ < 27.45°范围内,收集到 5472 个独立衍射点、其中可 观测衍射点 3197 个[*I* > 2.0σ(*I*)]。对数据进行经 验吸收校正,利用直接法和差值 Fourier 合成法确定 全部非氢原子坐标,通过全矩阵最小二乘法进行结 构和各向异性热参数修正,最终偏离因子 R= 0.0609, R<sub>\*</sub> = 0.1668。

I的分子式为  $C_{23}H_{13}NO_9PS_2CO_3$ , 分子量 719.22, 晶体属三斜晶系,  $P\overline{1}$ 空间群, 晶胞参数为: a = 0.84768(1) nm, b = 1.19049(3) nm, c = 1.43639(1) nm,  $\alpha = 86.926(1)^\circ$ ,  $\beta = 81.601(3)^\circ$ ,  $\gamma = 88.535(2)^\circ$ , V = 1.4318(5) nm<sup>3</sup>, Z = 2,  $D_c = 1.641$ g·cm<sup>-3</sup>, F(000) = 716,  $\mu = 1.893$  mm<sup>-1</sup>,  $(\Delta \rho)_{max} = 1.140$ e·Å<sup>-3</sup>,  $(\Delta \rho)_{max} = -0.394$ e·Å<sup>-3</sup>,  $S = 1.024_{\circ}$ 

非氢原子坐标和热参数见表 3, 主要键长和键 角见表 4。

簇合物 II, 选取 0.40×0.30×0.25mm 的黑色 柱状晶体,所用仪器型号, Mo Ka 射线波长,扫描方 式和晶体结构解析及修正方法同簇合物 I。在 1.79° < $\theta$  < 27.48°范围内,收集到 5186 个独立的衍射 点,其中可观察到衍射点 3865[*I* > 2.0 $\sigma$ (*I*)]。最 终偏离因子 *R*=0.0423, *R*<sub>\*</sub>=0.1075。

Ⅱ的分子式为 C<sub>17</sub>H<sub>12</sub>N<sub>2</sub>O<sub>7</sub>PS<sub>3</sub>ClCo<sub>3</sub>、分子量 695.68,晶体属三斜晶系, Pī空间群、晶胞参数为: a = 1.2050(2) nm, b = 1.2448(2) nm, c = 0.8951(2)nm,  $\alpha = 97.49(1)^\circ$ ,  $\beta = 93.552(4)^\circ$ ,  $\gamma = 108.432$ (3)°, V = 1.2554(3) nm<sup>3</sup>, Z = 2,  $D_c = 1.841$ g·cm<sup>-3</sup>, F(000) = 690,  $\mu = 2.419$  mm<sup>-1</sup>,  $(\Delta \rho)_{max} = 0.655$ e· $Å^{-3}$ ,  $(\Delta \rho)_{max} = -0.616$ e· $Å^{-3}$ ,  $S = 1.010_{\circ}$ 

非氢原子坐标和热参数见表 5, 主要键长和键 角见表 6。

CCDC: I: 178132; II: 178133

- 2 结果与讨论
- 2.1 谱学表征

| 表 I | 践台物的物理性质,质谱和元素分析数据 |
|-----|--------------------|
|-----|--------------------|

| Table 1 | Physical Pr | operties, Data | of Elementary | Analysis an | d MS for | the Clusters |
|---------|-------------|----------------|---------------|-------------|----------|--------------|
|---------|-------------|----------------|---------------|-------------|----------|--------------|

|         | <u>5</u> 1-(34)                                                                           |                   | m.p. ∕℃                | elementa                  |                   |             |               |
|---------|-------------------------------------------------------------------------------------------|-------------------|------------------------|---------------------------|-------------------|-------------|---------------|
| ciu     |                                                                                           | yveta / 70        |                        | с                         | Н                 | N           | M5( m/ 2)     |
| 1       | C <sub>21</sub> H <sub>11</sub> NO <sub>9</sub> PS <sub>2</sub> C <sub>01</sub> (719, 22) | 23                | 92                     | 38.23(38.39)              | 1.56(1.81)        | I. 85(1.95) | 720           |
| I       | C17H12N2O7PS3ClCo1(695.68)                                                                | 12                | 81                     | 29.15(29.37)              | 1.36(1.58)        | 4. 12(4.03) | 695           |
|         | т                                                                                         | 表 2<br>able 2 Spe | 2 箕合物的<br>ctroscopic l | 为光谱数据<br>Data for the Clu | sters             |             |               |
| cluster | IR, $\nu_{co}/cm^{-1}$                                                                    |                   | 'H N                   | MR,δ/ppm                  | -                 | <b>л</b> .Б | NMR, δ/ppm    |
| I       | 2085(m), 2042(vs), 2023(m) 7.01                                                           | - 7. 84(9H, m.    | -С.Н., С.Н             | ), 3.92(3H, s, -O(        | (H1), 1. 27(H, s  | -CH) 73.64( | P. sP-C.H.OCH |
| Π       | 2089(s), 2026(vs), 2025(m) 7, 19 -                                                        | ~7.43{5H.m.       | -C.H.). 1. 41          | ~ 1. 74(6H. d of d        | CH <sub>1</sub> ) | 100.147     | P. s. SP-CU   |

# 关 敏等: 簇合物 Co<sub>3</sub>(CO)<sub>7</sub>(μ<sub>2</sub>-S)[μ<sub>1</sub> η<sup>2</sup>-CNP(S)(C<sub>6</sub>H<sub>4</sub>OCH<sub>5</sub>)OC(Ph)CH]和 Co<sub>1</sub>(CO)<sub>7</sub>(μ<sub>2</sub>-S)[μ<sub>1</sub> η<sup>2</sup>-SCNC(CH<sub>3</sub>)<sub>2</sub>P(S)(Cl)N(Ph)]的合成与晶体结构

| 表 3 | 菠合物 | 目的非氢原子坐标和热参数 |
|-----|-----|--------------|
| 表 3 | 滾合物 | 1的非氢原子坐标和热霉素 |

Table 3 Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Thermal Parameters (×10nm<sup>2</sup>) for I

| atom  | ĩ       | y                 | z               | U(eq)*        | alom   | x         | ,         | 2        | Uleq1"        |
|-------|---------|-------------------|-----------------|---------------|--------|-----------|-----------|----------|---------------|
| Co(1) | 3642(1) | 75411)            | 8218(1)         | 61(1)         | C(5)   | 7289(1)   | - 154(7)  | 6048(7)  | 8812)         |
| Co(2) | 4815(1) | 1718(1)           | 6741(1)         | 55(1)         | C(6)   | 7225(13)  | 180(8)    | 7943(9)  | 121(4)        |
| Co(3) | 5974(1) | ~ 207(1)          | 7176(1)         | 70(1)         | C(7)   | 573(1)    | - 1676(8) | 7479(6)  | 89(2)         |
| S(1)  | 3842(2) | 5073(2)           | 6847(1)         | 70(1)         | C(8)   | 2366(7)   | 2119(5)   | 8049(4)  | 53(1)         |
| S(2)  | 3587(2) | 155(2)            | 6807(1)         | <b>67</b> (1) | C(9)   | 1102(7)   | 2587(6)   | 8697(4)  | 6112)         |
| P(1)  | 2306(1) | <b>3912</b> (1)   | 6854(2)         | <b>49</b> (1) | C(10)  | 301(7)    | 3539(5)   | 8470(4)  | 51(1)         |
| 0(1)  | 1259(8) | - 748(6)          | 9296(5)         | 119(2)        | C(11)  | - 936(6)  | 4139(5)   | 9103(4)  | 53(1)         |
| 0(2)  | 5102(9) | 1669(7)           | 9759(6)         | 128(3)        | C(12)  | ~ 1593(8) | 3643(6)   | 9980(5)  | 72(2)         |
| 0(3)  | 5428(8) | 2296(5)           | <b>4691</b> (4) | 111(2)        | C(13)  | - 2730(9) | 4209(7)   | 10579(5) | 84(2)         |
| 0(4)  | 7232(8) | 3077(6)           | 7437(5)         | 121(2)        | C(14)  | - 3228(8) | 5271(8)   | 10320(5) | 76(2)         |
| 015)  | 8085(8) | - 1 <b>06(6</b> ) | 5341(5)         | 127(3)        | CI 15) | -2627(8)  | 5755(7)   | 9470(5)  | 7912)         |
| 0(6)  | 815(1)  | 36(1)             | 8465(8)         | 202(6)        | CI16)  | - 1497(8) | 5202(6)   | 8857(5)  | 64(2)         |
| 0(7)  | 5620(9) | - 2621(7)         | 7686(6)         | 133(3)        | C(17)  | 1623(6)   | 3728(5)   | 5748(4)  | 49(1)         |
| O(8)  | 659(5)  | 4085(4)           | 7598(3)         | <b>60</b> (1) | C(18)  | 546(8)    | 2860(5)   | 5696(4)  | 63(2)         |
| 0(9)  | 327(6)  | 3119(5)           | 3135(3)         | 91(2)         | C(19)  | 52(8)     | 2650(6)   | 4833(5)  | 62(2)         |
| N(1)  | 2912(5) | 2623(4)           | 7231(3)         | 50(1)         | C(20)  | 670(7)    | 3296(6)   | 4021(4)  | 61(2)         |
| C(1)  | 219(1)  | - 171(7)          | 8879(6)         | 77(2)         | C(21)  | 1726(8)   | 4138(7)   | 4073(5)  | 76(2)         |
| C(2)  | 457(1)  | 1301(7)           | 9130(7)         | 90(2)         | C(22)  | 2218(8)   | 4359(6)   | 4934(4)  | 64(2)         |
| C(3)  | 5194(8) | 2094(6)           | 5479(6)         | 71(2)         | C123)  | -85(1)    | 2302(8)   | 3021(6)  | <b>96</b> (3) |
| C(4)  | 6304(8) | 2531(8)           | 7190(6)         | 84(2)         |        |           |           |          |               |

' Useq is defined one third of the trace of the orthogonalized  $U_0$  tensor,  ${\mathcal T}\,\overline{\square}$  .

表4 簇合物 l的部分键长和键角

Table 4 Selected Bond Lengths(nm) and Bond Angles(°) for I

| 0.2447(2)        | Co(1)-Co(3)                                                                                                                                                                                           | 0.2581(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Co(2)-Co(3)                                           | 0.2553(1)                                             |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| 0.2191(2)        | $C_0(2)$ - $S(2)$                                                                                                                                                                                     | 0.2146(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Co(3)-S(2)                                            | 0.2191(2)                                             |
| 0.1804(9)        | Co(1)-C(2)                                                                                                                                                                                            | 0.178(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Co(1)-C(8)                                            | 0. 1954(6)                                            |
| 0.1827(8)        | Co(2)-C(4)                                                                                                                                                                                            | 0.1819(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Co(2)-N(1)                                            | 0 1980(4)                                             |
| 0.1826(9)        | Co(3)-C(6)                                                                                                                                                                                            | 0.172(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Co(3)-C(7)                                            | 0.1790(9)                                             |
| 0.1317(7)        | C(8)-C(9)                                                                                                                                                                                             | 0.1434(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(9)-C(10)                                            | 0.1355(9)                                             |
| 0.1376(7)        | O(8)-P(1)                                                                                                                                                                                             | 0.1645(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P(1)-S(1)                                             | 0.1921(2)                                             |
| 0. 1693(5)       | P(1)-C(17)                                                                                                                                                                                            | 0.1794(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                       |
| <b>62.</b> 10(4) | Co(1)-Co(3)-Co(2)                                                                                                                                                                                     | 56.95(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Co(2)-Co(1)-Co(3)                                     | 60.95(4)                                              |
| 54.78(6)         | S(2)-Co(1)-Co(3)                                                                                                                                                                                      | 53.94(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S(2)-Co(2)-Co(1)                                      | 56, 52(6)                                             |
| 54, 78(6)        | S(2)-Co(3)-Co(1)                                                                                                                                                                                      | 53.91(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S(2)-Co(3)-Co(2)                                      | 53, 1216)                                             |
| 96.0(2)          | Co(2)-S(2)-Co(1)                                                                                                                                                                                      | 68.70(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Co(2)-S(2)-Co(3)                                      | 72, 10(7)                                             |
| 72. 15(7)        | C18)-Co(1)-Co(2)                                                                                                                                                                                      | 72.8(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(8)-Co(1)-Co(3)                                      | 133. 5(2)                                             |
| 73.7(1)          | N(1)-Co(2)-Co(3)                                                                                                                                                                                      | 135.3(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N(1)-C(8)-C(9)                                        | 122. 8(5)                                             |
| 108.6(4)         | C(9)-C(8)-Co(1)                                                                                                                                                                                       | 128.5(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(8)-N(1)-P(1)                                        | 124. 6(4)                                             |
| 104.7(4)         | $P(1)-N(1)-C_0(2)$                                                                                                                                                                                    | 129. 4(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                       |
|                  | 0, 2447(2)<br>0, 2191(2)<br>0, 1804(9)<br>0, 1827(8)<br>0, 1826(9)<br>0, 1317(7)<br>0, 1376(7)<br>0, 1693(5)<br>62, 10(4)<br>54, 78(6)<br>96, 0(2)<br>72, 15(7)<br>73, 7(1)<br>108, 6(4)<br>104, 7(4) | $\begin{array}{c ccccc} 0.2447(2) & Co(1)-Co(3) \\ 0.2191(2) & Co(2)-S(2) \\ 0.1804(9) & Co(1)-C(2) \\ 0.1827(8) & Co(2)-C(4) \\ 0.1826(9) & Co(3)-C(6) \\ 0.1317(7) & C(8)-C(9) \\ 0.1376(7) & O(8)-P(1) \\ 0.1693(5) & P(1)-C117) \\ \hline \\ 62.10(4) & Co(1)-Co(3)-Co(2) \\ 54.78(6) & S(2)-Co(1)-Co(3) \\ 54.78(6) & S(2)-Co(1)-Co(3) \\ 54.78(6) & S(2)-Co(1)-Co(2) \\ 73.7(1) & N(1)-Co(2)-Co(3) \\ 108.6(4) & C(9)-C(8)-Co(1) \\ 104.7(4) & P(1)-N(1)-Co(2) \\ \hline \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

簇合物 I和 Ⅱ的 C、H、N 的元素百分含量实测值 与计算值相符, MS(*m*/*z*)所测的分子离子峰与分子 量的计算值一致,表明给出的化学式正确,并与 X 光晶体分析结果相同。

I和 II的 IR(ν<sub>co</sub>), 'H NMR 和 <sup>3</sup>P NMR 数据见表 2、 它们的 ν<sub>co</sub> 在 2020 ~ 2090 cm<sup>-1</sup> 间有三个特征吸 收峰、证明簇合物中所有 CO 配体以端基方式与分 子骨架上的 3 个钴原子配位。从 'H NMR 数据可以 看出, I中含有单取代、双取代苯环及 -OCH<sub>3</sub> 和 -CH 基团。II中含有一个单取代苯环和两个 -CH<sub>3</sub>、两个甲 基由于受到隔位磷原子及两个甲基间的相互偶合作 用,使得甲基上的氢原子信号在  $\delta = 1.41 \sim 1.74$  位 置分裂为双二重峰。<sup>31</sup>P NMR 数据表明, I 在  $\delta =$ 73.64 和 II在  $\delta = 100, 14$  处有磷原子的单峰出现, 由于两个磷原子的环境不同,所以化学位移有较大 差异。 1

1

ł

ł

ł

4

ł

表 5 簇合物 II的非氢原子坐标和热参数

第18卷

维普资讯 http://www.cqvip.com

| Ta            | ble 5 Atom      | ic Coordina     | ates(×10⁴) a | nd Equival    | ent Isotrop | oic Therma | Parameters {  | ×10nm*) f        | or II         |
|---------------|-----------------|-----------------|--------------|---------------|-------------|------------|---------------|------------------|---------------|
| atom          | r               | у               | Z            | U(eq)'        | atom        | x          | ;             | z                | U(eq)*        |
| Co(1)         | 7064(1)         | 2058(1)         | 5050(1)      | 24(1)         | C(1)        | 7097(4)    | 1677(3)       | 6934(4)          | 32(1)         |
| $C_0(2)$      | 7688(1)         | 2477(1)         | 2562(1)      | 23(1)         | C(2)        | 5528(4)    | 1371(3)       | 4451(4)          | 30(1)         |
| $C_0(3)$      | 7986(1)         | 776í1)          | 3595(1)      | 27(1)         | C(3)        | 8348(4)    | 112(4)        | 5171(5)          | 41(1)         |
| <b>CI</b> (1) | 5884(1)         | 5814(1)         | 1836(1)      | 54(1)         | C(4)        | 8942(4)    | 431(4)        | 2254(5)          | 41(1)         |
| P(1)          | 7570(1)         | 6150(1)         | 2736(1)      | 32(1)         | C(5)        | 6599(4)    | -287(4)       | 2836(5)          | 35(E)         |
| S(1)          | 8517(1)         | <b>7695</b> (1) | 2727(1)      | 46(1)         | C(6)        | 8669(4)    | 2511(3)       | 1116(4)          | 30(E)         |
| S(2)          | <b>696</b> 1(1) | 3824(1)         | 5737(1)      | 28(1)         | C(7)        | 6296(4)    | 1770(3)       | 1436(4)          | 30(1)         |
| S(3)          | 8854(1)         | 2561(1)         | 4537(1)      | 27(1)         | C(8)        | 7377(3)    | 4517(3)       | 422 <b>9</b> (4) | 23(1)         |
| 0(1)          | 7111(3)         | 1415(3)         | 8088(3)      | 51(1)         | C(9)        | 8017(4)    | 4930(3)       | 1886(4)          | 32(1)         |
| O(2)          | 4548(3)         | 929(3)          | 4085(4)      | 43(1)         | C(10)       | 9364(4)    | 5349(4)       | 2021(5)          | 41(1)         |
| 0(3)          | 8573(4)         | - 282(3)        | 6161(4)      | 62(1)         | C(11)       | 7463(5)    | 4459(4)       | 252(5)           | 50(1)         |
| 0(4)          | 9519(3)         | 209(3)          | 1384(4)      | 60(1)         | C(12)       | 7244(3)    | 6287(3)       | 5775(4)          | 27(1)         |
| 0(5)          | 5737(3)         | - 986(3)        | 2365(4)      | 50(1)         | C(13)       | 6141(4)    | 6367(4)       | 5918(5)          | 38(1)         |
| 0(6)          | 9299(3)         | 2460(3)         | 234(3)       | <b>42</b> (1) | C(14)       | 5930(4)    | 6919í4)       | 7261(5)          | <b>42</b> (1) |
| 0(7)          | 5415(3)         | 1297(3)         | 746(3)       | 41(1)         | C(15)       | 6812(4)    | 7391(4)       | 8438(5)          | <b>39</b> (1) |
| N(1)          | 7621(3)         | 4076(3)         | 2927(3)      | 25(1)         | C(16)       | 7925(4)    | 7329(4)       | 8287(5)          | 41(1)         |
| N(2)          | 7467(3)         | 5674(3)         | 4400(3)      | 27(1)         | C(17)       | 8143(4)    | 6769(3)       | 6949(4)          | <b>32</b> (1) |
|               |                 |                 | 表 6          | 簇合物 II的       | 部分键长        | 和键角        |               |                  |               |
|               |                 | Table 6         | Selected Bo  | nd Lengths    | (nm) and    | Bond Ang   | les(°) for II |                  |               |
| C             | s(1)-Co(2)      | 0. 2461         | 3(9) Co      | (1)-Co(3)     | 0.24        | 98(1)      | Co(2)-Co(3)   | 0. 253           | 29(9)         |
| Ce            | o(1)-S(3)       | 0.2145          | (1) Co       | (2)-5(3)      | 0. 21:      | 59(1)      | Co(3)-S(3)    | 0.216            | 3(1)          |
| Ce            | o(1)-C(1)       | 0. 1812         | (4) Co       | (1)-C(2)      | 0.17        | 89(4)      | $C_0(1)-S(2)$ | 0. 224           | 8(1)          |
| Co            | a(2)-C(6)       | 0. 1802         | (4) Co       | (2)-C(7)      | 0. 17       | 98(4)      | Co(2)-N(1)    | 0.200            | 4(3)          |

0.1817(5)

0.1312(5)

58.58(3)

55.38(4)

54, 20(4)

54.90(4)

93.69(9)

126.9(3)

113.3(3)

Co(3)-C(5)

C(8)-N(2)

 $C_0(3) - C_0(1) - C_0(2)$ 

 $C_0(1)$ - $C_0(2)$ -S(3)

 $S(3)-C_0(3)-C_0(2)$ 

S(3)-Co(3)-Co(1)

 $C_0(1)-S(2)-C(8)$ 

N(1)-C(8)-N(2)

 $C(9)-N(1)-C_0(2)$ 

0.1798(5)

0.1397(5)

61.42(3)

54,86(3)

54.04(3)

54. 23(4)

104.7(1)

116.5(3)

124.3(2)

 $C_0(3) - C(4)$ 

C(8)-N(1)

 $C_0(2)$ - $C_0(3)$ - $C_0(1)$ 

S(3)-Co(1)-Co(2)

S(3)-Co(2)-Co(3)

S(3)-Co(1)-Co(3)

 $C_0(1)-C_0(2)-N(1)$ 

S(2)-C(8)-N(1)

C(8)-N(1)-C(9)

## 2.2 晶体结构

÷ .,

 $C_0(3) - C(3)$ 

S(2)-C(8)

N(1)-C(9)

 $C_0(1)-C_0(2)-C_0(3)$ 

Co(1)-S(3)-Co(2)

Co(2)-S(3)-Co(3)

 $C_0(1)-S(3)-C_0(3)$ 

 $S(2)-C_0(1)-C_0(2)$ 

S(2)-C(8)-N(2)

C(8)-N(1)-Co(2)

0.1822(5)

0 1713(4)

0.1489(5)

60.00(3)

69.77(4)

71.76(5)

70.87(5)

92.82(4)

116.7(3)

121.7(2)

簇合物 I和 II的分子结构分别如图 1 和图 2 所示。从 图 1 看出, 簇 I是一个三核钴簇、分子骨架 Co<sub>3</sub>S 为三 角锥构型, 含有一个与 3 个钴原子相连  $\mu$ -S 的原 子, 和一个不对称的双齿环状桥基配体 [ $\mu$ ,  $\eta^2$ -C<sup>•</sup>N<sup>•</sup> P(S) (C<sub>6</sub>H<sub>4</sub>OCH<sub>3</sub>) OC(Ph) CH], 所有 CO 配体均为端 基配位、它可以看作是母体簇 Co<sub>3</sub>S(CO)<sub>9</sub><sup>[3]</sup>的二取代 产物, 即双齿环状桥基配体作为 3e 供体分别取代了 Co<sub>3</sub>S(CO)<sub>9</sub> 基底的两个钴原子上的一个 CO 配体。 I的 3 条 Co-Co 键长分别为 Co(1) -Co(3) (0.2581 nm)、Co(2) -Co(3) (0.2553nm) 和 Co(1) -Co(2) (0.2447nm), 其平均值等于 0.2527nm, 比母体簇 Co<sub>3</sub>S(CO), 的 3 个 Co-Co 键长平均值 0.2637nm 短, 其中含有双齿桥基配体的 Co(1)-Co(2) 键长最短。 这可以用 Benoit<sup>[3]</sup>的"压缩效应"给以解释,即由于 双齿桥基配体的存在, 含桥的 Co-Co 边比 Co<sub>3</sub> 三角 形中其它两个 Co-Co 边短。因此,簇 I中 Co<sub>3</sub>S 三角锥 的底面不再是等边三角形, 并扭曲了 Co<sub>3</sub>S 分子骨 架。与 Co(1)原子配位的 C(8)原子周围的 3 个键角 分别为 122.8(5)°, 108.6(4)°, 128.5(4)°, 总和为 359.9°, 与 Co(2)原子配位的 N(1)原子周围的 3 个 键角分别为 124.5(4)°, 104.7(4)°, 129.4(3)°, 总和 为 358.7°,表明 C(8)原子及 N(1)原子都采取 sp<sup>2</sup> 杂



Fig. 2 Molecular structure for II

化与周围原子成键。Co(1) -C(8) 键长为 0. 1954nm 是在稳定的过渡金属卡宾键长范围内 (Co-C 键长 0. 1953nm)<sup>[11]</sup>。C(8)-N(1)键长(0. 1317nm), 比一般 的 C-N 单键键长 (0. 146nm)<sup>[12]</sup>短,表明 C(8)-N(1) 键具有双键性质。电子计数表明, $\mu_3$ -S 为 4e 供体、双 齿环状桥基配体 [ $\mu$ ,  $\eta^2$ -C<sup>\*</sup>N<sup>\*</sup>P(S) (C<sub>6</sub>H<sub>4</sub>OCH<sub>3</sub>) OC (Ph) CH]为 3e 供体, CO 为 2e 电子共体,所以, 3 个 Co 原子价电子总和等于 48e,符合 18e 规则、应具有 反磁性且性质稳定。而母体簇 Co<sub>3</sub>S(CO)<sub>9</sub> 中 3 个 Co 原子价电子之和为 49e,具有顺磁性。此外、 $\mu_3$ -S(2) -Co(2)键长 (0. 2146nm) 比其它两个 S(2) -Co(1) (0. 219 Inm)和S(2)-Co(3)(0. 219 Inm)键长短,由此 推测、 $\mu_3$ -S(2)的 4 个价电子不是等量分配给 3 个钻 原子,而可能较多地分配给具有卡宾键的 Co(2) 原 子上。

从图 2 看出, 簇合物 II也是一个三核钴簇, 它的 分子骨架立体结构和骨架价电子分布与簇合物 I类 似, 这里不在赘述。二者所不同的是、II的 3 个 Co-Co 键长的平均值 0. 2497nm 比 I的 3 个 Co-Co 键长的 平均值 0. 2527nm 稍短、这可能与 I和 II含有的双齿 桥连配体 [ $\mu$ ,  $\eta^2$ -C<sup>•</sup>N<sup>•</sup>P(S)(C<sub>6</sub>H<sub>4</sub>OCH<sub>3</sub>)OC(Ph)CH] 和 [ $\mu$ ,  $\eta^2$ -S<sup>•</sup>CN<sup>•</sup>C(CH<sub>3</sub>)<sub>2</sub>P(S)(Cl)N(Ph)]的结构和 性质不同有关, 如在 I中的卡宾碳原子 C(8)与 N(1) 原子键含有双键性质, 从而使金属卡宾键 Co(1) -C (8)得以稳定。在 II中 Co(1)-Co(2)键长(0. 2461 nm) 明显短于 Co(1)-Co(3)(0. 2498nm)和 Co(2)-Co(3) (0. 2533nm)键长, 同样证明在与双齿桥连配体键合 Co(1)-Co(2)键长出现了压缩效应。

值得注意的是.由于 I和 II的分子骨架 Co<sub>5</sub>S 中的 3 个 Co 原子的配位环境不同,这类分子可能存在旋光异构体。

#### 参考 文献

- [1] Jeannin S., Jeannin Y., Lavigne G. Inorg. Chem. 1978, 17, 2103.
- [2] Patin H., Mignani G., Mahe C. et al J Organomet. Chem., 1981, 208(2), C39.
- [3] Mahe C., Patin H., Benoit A. et al J. Urganomet. Chem., 1981, 216(1), C15.
- [4] Dettlaf G., Hubemer P., Klimes J. et al J. Organomet. Chem., 1982, 229, 63.
- [5] Benoit A., Darchen A., Marouille J. Y. Le et al Organometallics, 1983, 2(4), 555.
- [6] Brodie A. M., Holden H. D., Lewis J. et al J. Chem. Soc., Datton Trans., 1986, 3, 633.
- [7] CHENG Qing-Min(成庆民), LIU Shu-Tang(刘树堂)、HU Xiang(胡 襄) et al Gaodeng Xuexiao Huaxue Xuebao (Chem. J. Chinese Universities), 1997, 18(8), 1246.
- [8] LIU Bing(刘 兵)、WU Bing-Fang(吴乗芳), HU Xiang
  (胡 襄) et al Huaxue Xuebao(Acta Chimica Sinica),
  1998, 56(9), 930.
- [9] Pedersen B. S., Lawesson S. O. Tetrahedron, 1979, 35 (20), 2433.
- [10] FENG Ke-Sheng(冯克胜), CHEN Ru-Yu(陈茹玉), CHENG Mu-Ru(程表如) Gaodeng Xuexiao Huaxue Xuebao (Chem. J. Chinese Universities), 1993, 14(10), 1387
- [11] Patin H., Mignani G., Mahe C. et al J. Organomet. Chem., 1980, 197(3), 315.
- [12] Lappert M. F., Pye P. L., Mclaughlim G. M. et al J. Chem. Soc., Dalton Trans., 1977, 13, 1272.

第18卷

维普资讯 http://www.cqvip.com

# Syntheses and Crystalline Structures of $Co_3(CO)_7(\mu_3-S)[\mu, \eta^2-C^*N^*P(S)(C_6H_4OCH_3)OC(Ph)CH](I)$ and $Co_3(CO)_7(\mu_3-S)[\mu, \eta^2-S^*CN^*C(CH_3)_2P(S)(CI)N(Ph)](II)$

## GUAN Min LIU Shu-Tang\* WU Bing-Fang YU Shi-Yong

(College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot 010021)

Through the reaction of  $Co_2(CO)_8$  with two heterocyclic ligands of  $\dot{C}(S)NHP(S)(C_6H_4OCH_3)OC(Ph)CH(L_1)$ and  $\dot{C}(S)NHC(CH)P(S)(Cl)N(Ph)(L_2)$ , the two trinuclear cobalt carbonyl sulfur clusters.  $Co_3(CO)_7(\mu_3-S)[\mu, \eta^2-C^*N^*P(S)(C_6H_4OCH_3)OC(Ph)CH](I)$  and  $Co_3(CO)_7(\mu_3-S)[\mu, \eta^2-S^*CN^*C(CH)P(S)(Cl)N(Ph)](II)$ , were prepared and characterized by IR, 'H NMR, 'P NMR, MS spectroscopy and X-ray crystal diffraction. The crystals of I and II are triclinic, belonging to space group PI, a = 0.84768(1) nm, b = 1.19043(3) nm, c =1.43639(1) nm,  $\alpha = 86.926(1)^\circ$ ,  $\beta = 81.603(3)^\circ$ ,  $\gamma = 88.535(2)^\circ$ , V = 1.4318(5) nm<sup>3</sup>, Z = 2,  $D_c = 1.641g \cdot$ cm<sup>-3</sup>, F(000) = 716,  $\mu = 1.893$ mm<sup>-1</sup>, R = 0.0602,  $R_* = 0.1515$  for complex I; a = 1.2050(2) nm, b = 1.2448(2) nm, c = 0.8951(2) nm,  $\alpha = 97.49(1)^\circ$ ,  $\beta = 93.552(4)^\circ$ ,  $\gamma = 108.432(3)^\circ$ , V = 1.2554(3) nm<sup>3</sup>, Z = 2.  $D_c = 1.841g \cdot$  cm<sup>-3</sup>, F(000) = 690,  $\mu = 2.419$ mm<sup>-1</sup>, R = 0.0423,  $R_* = 0.1075$  for complex II. The structure analyses show that the Co<sub>3</sub>S frameworks of I and II are a triangular pyramid, respectively, and for which the sulfur atom as face bridging ligand and all carbonyls as terminal ligand link up with three cobalts in the cluster framework. I contains a four-member ring of CoCoCN and II has a five-member of CoCoSCN.

Keywords:

cobalt carbonyl sulfur cluster

synthesis crystal structure