第4期 2002年4月 Vol. 18, No. 4 Apr., 2002

研究简报

[Mn(H₂O)(phen)₂(PAc)](ClO₄)的合成、红外光谱及晶体结构

乐学义*,1 杨 光² 卢其明¹ (¹华南农业大学理学院应用化学系,广州 510642) (²中山大学化学系,广州 510275)

关键词: 苯乙酸 锰(II)配合物 I,10-邻菲咯啉 晶体结构 分类号: 0614.4

芳香酸具有重要的生理活性,如对植物生长具 有调节作用及对癌细胞具有抑制作用等,并且这些 作用通常与 Mn (II)等金属离子有关^[1,2]。尤为引人注 意的是,锰的相关配合物能模拟锰酶(如含锰过氧化 氢酶、含锰丙酮酸脱羧酶及含锰核糖核苷酸还原酶 等)活性中心及绿色植物光系统 II(PS II)中放氧中 心(OEC)^[3-5]。因此,研究 芳香酸-锰离子-生物配 体或与生物配体类似的配体(如咪唑、苯并咪唑或邻 菲咯啉等)的混配配合物有着重要意义。在我们以 前的工作基础上^[6],本文合成了 苯乙酸-Mn(II)-邻 菲咯啉配合物,并测定了红外光谱及其晶体结构。 该配合物尚未见文献报道。

1 实验部分

1.1 试剂与仪器

Mn(ClO₄)₂、6H₂O 由 MnCO₃ 与 HClO₄ 反应制 得,其它试剂均为市售分析纯。Perkin-Elmer 240C 型 元素分析仪; DDS-11A 型电导率仪; Nicolet 170SX 红外分光光度计(KBr 压片)。

1.2 配合物的合成

在加热和搅拌下, 将摩尔比为 1:1:2 的苯乙酸、 Mn(ClO₄)₂・6H₂O 和 1, 10-邻菲咯啉溶解于 50% (*V/V*)乙醇-水混合溶剂中, 调节 pH = 5.5, 静置, 两周后析出适于 X-射线衍射分析的黄色长方型片 状晶体。

1.3 晶体结构测定

收稿日期:2001-09-17。收修改稿日期:2001-11-23。

一广东省自然科学基金(No. 974207)和广东省教育厅自然科学研究基金(No. 200070)。

*通讯联系人。E-mail: xueyil@163. net

选取一颗 0.42×0.29×0.22mm³ 的晶体置于 Bruker Smart 1K CCD X-射线四园衍射仪上,用单色 化的 Mo $K\alpha$ ($\lambda = 0.071069$ nm) 辐射为光源,室温下 在 4.14° ≤ $\theta \le 30.09$ °范围内收集到 10605 个反 射数据,其中独立衍射点($R_{mt} = 0.0132$)和 $I > 2\sigma$ (I)的可观察点分别为 8150和 6108个,全部数据经 经验吸收校正。晶体结构用直接法和 Fourier 法解 出,然后用各向异性热参数进行全矩阵最小二乘法 修正,全部非氢原子坐标、各向异性温度因子修正至 收敛。氢原子从差 Fourier 图上定出,所有计算均在 PC 机算机上用 SHEXL 97 程序解出。

2 结果与讨论

2.1 配合物组成

配合物 (C₃₂H₂₃ClCuN₄O₇) 元素分析结果 (计算 值,%)为:C 57.32(57.54),H 3.61(3.77),N 8.45 (8.39)。元素分析结果与晶体结构测得的配合物化 学式[Mn(H₂O)(phen)₂(PAc)](ClO₄)(phen 为 1,10-邻菲咯啉,PAc 为苯乙酸根)一致。配合物甲醇溶液 的摩尔电导率为 97.3S · cm² · mol⁻¹,超过了 1:1型 电解质摩尔电导率值 ^[7],表明配合物中苯乙酸根配 位较弱,发生了部分电离。

2.2 红外光谱

比较标题配合物与配体苯乙酸的红外光谱图, 发现配合物中原苯乙酸根配体羧基 COO⁻的 v_e... (~1700cm⁻¹)消失,而出现了两个新的吸收带1593

第一作者:乐学义,男,40岁,博士,副教授;研究方向:配位化学及生物无机化学。

和 1376cm⁻¹、 分别归属于苯乙酸根羧基 COO⁻的 $\nu_{arte=a}$ 和 $\nu_{te=a}$ 。相互间差值(217cm⁻¹)较大,表明苯 乙酸根中羧基为单啮配位基^[8]。另外, 1580cm⁻¹处 的吸收带归属于邻菲咯啉中 $\nu_{c=v}$,并且与自由配体 邻菲咯啉相应的吸收带相比,向低频方向移动.表明 邻菲咯啉参与了配位。

2.3 晶体结构描述

晶体结构分析结果表明: 该晶体属三斜晶系, PĪ空间群,晶胞参数: a = 0.9289(2) nm, b = 1.2425(2) nm, c = 1.4791(3) nm, $\alpha = 114.34(3)^{\circ}$, $\beta = 91.25(3)^{\circ}$, $\gamma = 104.65(1)^{\circ}$, V = 1.4893(4) nm³, Z = 2, F(000) = 686, $D_c = 1.489g \cdot cm^{-3}$, $\mu = 0.589$ mm⁻¹, 最终偏差因子 [$I > 2\sigma(I)$]: $R_1 = 0.0430$, w $R_2 = 0.1158$, R(全部数据): $R_1 = 0.0594$, w $R_2 = 0.1277$ 。差值 Fourier 图上最高峰和最低峰分别为 637 和 - 713e \cdot nm^{-3}。

配合物晶体由阳离子型的配离子 {Mn(H₂O) (phen)(PAc)]*和阴离子 ClO₄-组成, 二者之间主要 由静电作用结合在一起。非氢原子坐标和热参数列 于表1中, 部分键长和键角见表 2. 配离子透视图示 于图 1。

1

由图 1 可见,每个中心离子 Mn (II)与二个 1,10-

表1 非氢原子坐标和热参数

Table 1 Nonhydrogen Fractional Atomic Coordinates (×104) and Equivalent Isotropic Temperature Factors (×105mm)

atom	x	_ y	Z	Beq	atom	x	y	z	Beq
Mn(1)	2818(1)	4826(1)	2501(1)	42(1)	C(1)	5286(2)	6779(2)	4246(1)	44(1)
C(2)	6143(3)	8147(2)	4829(2)	65(1)	C(3)	6882(3)	8762(2)	4203(2)	52(1)
C(4)	8336(3)	8785(2)	4036(2)	68(1)	C(5)	9025(3)	9317(3)	3433(2)	7 8 (1)
C(6)	8261(4)	9840(2)	3015(2)	76(1)	C(7)	6830(4)	9849(2)	3193(2)	72(1)
C(8)	6133(3)	9307(2)	3775(2)	60(1)	0(5)	4566(2)	6436(1)	3380(1)	53(1)
0(6)	5298(2)	6100(1)	4664(1)	60(1)	C(9)	1700(3)	6375(2)	1442(2)	59(1)
C(10)	1363(3)	6662(2)	651(2)	67(1)	C(11)	1685(3)	6008(2)	-269(2)	67 (1)
C(12)	2366(2)	5074(2)	-425(2)	54(1)	C(13)	2799(3)	4361(2)	- (367(2)	67(1)
C(14)	3473(3)	3491(2)	- (475(2)	63(1)	C(15)	3782(2)	3224(2)	-648(1)	51(1)
C(16)	4489(3)	2325(2)	-715(2)	59(1)	C(17)	4732(3)	2115(2)	100(2)	60 (1)
៤(18)	4301(3)	2818(2)	999(2)	53(1)	C(19)	3371(2)	3892(2)	289(1)	42(1)
C(20)	2662(2)	4838(2)	405(1)	44(1)	N(1)	2320(2)	5480(1)	1326(1)	46(1)
N(2)	3637(2)	3684(1)	1101(1)	44(1)	C(21)	1456(3)	6695(2)	4257(2)	6 1(1)
G(22)	455(3)	7055(2)	4931(2)	69(1)	C(23)	- 892(3)	6234(3)	4822(2)	67(1)
C(24)	~ 1266(2)	5041(2)	4031(2)	55(1)	C(25)	-2670(3)	4122(3)	3866(2)	64(1)
C(26)	- 3001(3)	3006(3)	3091(2)	63 (1)	C(27)	- 1958(2)	2677(2)	2405(2)	50 (1)
C(28)	- 2275(3)	1523(2)	1570(2)	60(1)	C(29)	- 1217(3)	1269(2)	965(2)	62(1)
C(30)	170(3)	2163(2)	1189(2)	54(1)	C(31)	- 542(2)	3534(2)	2564(1)	41(t)
C(32)	- 199(2)	4749(2)	3387(1)	44(1)	N(3)	1156(2)	5572(2)	3502(1)	49(1)
N(4)	520(2)	3271(1)	1959(1)	44(1)	Cl(1)	2678(3)	-235(3)	2039(2)	64(1)
0(1)	1236(3)	- 298(3)	1445(2)	107(1)	0(2)	3778(3)	256(3)	1394(2)	1 36(1)
0(3)	2800(6)	1421(2)	2771(2)	175(2)	0(4)	2807(3)	- 509(2)	2532(2)	113(1)
O(1W)	3466(2)	303271)	3345(1)	64(1)					

表 2 主要键长和键角

Table 2	Selected	Bond	Distances (n	ima)	and	Angles (٩J)
---------	----------	------	--------------	------	-----	----------	----	---

Mn-N(1)	0.2284(2)	Mn-N(2)	0.2252(2)	Ma-N(3)	0.2264(2)
Mn-N(4)	0,2344(2)	Mn-0(5)	0.2110(2)	Mn-O(W)	0 2147(2)
O(5)-Mn-O(W)	89.56(6)	O(5)-Mn-N(1)	94. 92(6)	0(5)-Ma-N(2)	109.38(7)
O(5)-Mn-N(3)	90.64(7)	0(5)-Mn-N(4)	162. 45(6)	O(W)-Mn-N(1)	167.48(7)
O(W)-Mn-N(2)	93.95(6)	O(W)-Mn-N(3)	95, 48(7)	O(W)-Mn-N(4)	87.13(6)
N(2)-Mn- $N(1)$	73.54(6)	N(2)-Mn-N(3)	157.92(6)	N(2)-Mn-N(4)	88.06(7)
N(3)-Mn- $N(1)$	96.15(7)	N(3)-Mn-N(4)	72.54(6)	N(1)-Mn-N(4)	91.95(7)
O(6)-C(1)-C(2)	117.40(18)	0(6)-0(1)-0(5)	125.01(18)	0(5)-C(1)-C(2)	(17, 54(18)
C(1)-O(5)-Mn	130.21(13)				

· 429 ·

 $\begin{array}{cccccc} C14 & C13 & C14 & C13 & C16 & C6 & C6 & C17 & C7 & C5 & C10 & C19 & C18 & C10 & C10 & C10 & C10 & C29 & C10 & C10 & C10 & C29 & C10 & C10 & C29 & C10 & C10 & C21 & C28 & C10 & C10 & C21 & C28 & C10 & C10 & C21 & C22 & C21 & C22 & C23 & C22 & C22$

图 1 配离子[Mn(H₂O)(phen)(PAc)]*的透视图 Fig. | Perspective view of [Mn(H₂O)(phen)(PAc)]*

邻菲咯啉中四个 N 原子(Mn-N 平均键长为 0.2286nm)、一个水分子的氧原子 [Mn-O(w) 键长为 0.2147nm]和一个苯乙酸根(单啮)氧原子(Mn-O键 长为0、2110nm)配位,形成了一个变形的八面体。配 离子中配位原子 N(2)、N(3)、N(4) 和 O(5) 处在赤 道平面上,平面方程为-3.7636x+10、1843y-11.7397z=0.9878, 各原子偏离平面值依次为: 0.01102, 0.01481, -0.01449 和 -0.01134nm, 而中 心离子 Mn (II)基本上在该平面上、偏离值仅为 -0.00626nm。N(1)和水分子氧原子占据轴向位置、 但由于邻菲咯啉芳环结构的刚性作用, 使 N(1) -Mn-O(w) 键角偏离 180°而为 167.48°。虽然与类似 条件下制得的苯甲酸配合物结构及其组成不同,但 苯乙酸根和苯甲酸根的羧基均为单啮配位基、并且 具有类似的配位键键长(Mn-0 平均键长为 0.2138) nm, Mn-N 平均键长为 0. 2315nm)^[6]。键长和键角数 据表明: 晶体中 ClO, 高子接近正四面体。另外, 邻 近二配离子 [Mn(H2O) (phen) (PAc)]*的邻菲咯啉 芳环间几乎平行, 二者之间距离为 0.341nm, 因而推 测相互之间存在着堆积作用 (图 2), 这可能是配合

图 2 配合物晶胞堆积图

Fig. 2 Packing view of $[Mn(H_2O)(phen)_2(PAc)](ClO_4)$

物分子之间相互识别作用引起的。并且可能正是这 种作用阻止了分子内苯乙酸根中苯环与邻菲咯啉芳 环间的堆积作用。

参考文献

- Billaud C., Lecornu D., Nicolas J. J. Agric. Food Chem., 1996, 44(7), 1668.
- [2] Ferrandia G., Meliar B., Loercher A. et al Cancer Res., 1997, 57(19), 4309.
- [3] Andruh M., Roesky H. W., Noltemeyer M. et al Polyhedron, 1993, 12(23), 2901.
- [4] Li J., Zhang F. X., Tang Z. X. et al Gaodeng Xuexiao Huaxue Xuebao (Chem. J. Chin. Univ.), 2000. 22(6), 836.
- [5] Cheng D. P., Liu Y., Xu D. J. et al J. Coord. Chem., 1999,48(4),495.
- [6] Le X. Y., Zhou X. H., Yu K. B. et al Chinese J. Chem., 2000, 18(4), 638.
- [7] Gear W. J. Coord. Chem. Rev., 1970, 7, 81.
- [8] Nakamoto K. (中本一雄), Translated by HUANG De-Ru (黄徳如), WANG Ren-Qing(汪仁庆) Infrared and Raman Spectra of Inorganic and Coordination Compounds, Third Edition(无机和配位化合物的红外和拉曼光谱,第三 版), Beijing: Chemical Industry Press, 1986, p235.

Synthesis, IR Spectrum and Crystal Structure of Ternary Mn (II) Complex with 1, 10-Phenanthroline and Phenylacetate

LE Xue-Yi*.1 YANG Guang² LU Qi-Ming⁴

(¹Department of Applied Chemistry, College of Sciences. South China Agricultural University, Guangzhou 51064) (¹Department of Chemistry, Zhongshan University, Guangzhou 510275)

The complex $[Mn(H_2O)(phen)_2(PAc)](ClO_4)$ was synthesized and investigated by elemental analysis, molar conductivity, IR spectrum and X-ray diffraction methods, where phen = 1, 10-phenanthroline and PAc = phenylacetate group. The complex crystallizes in the triclinic space group, $P\overline{1}$, with a = 0.9289(2)nm, b = 1.2425(2)nm, c = 1.4791(3)nm, $\alpha = 114.34(3)^\circ$, $\beta = 91.25(3)^\circ$, $\gamma = 104.65(1)^\circ$, $V = 1.4893(4)nm^3$, Z = 2, F(000) = 686, $D_c = 1.489g \cdot cm^{-3}$, $\mu = 0.589mm^{-1}$. The Mn (II) ion has a six-coordinate distorted-octahedral geometry with the four nitrogen atoms of two phen ligands, a coordinated-water oxygen atom, and a carboxylate oxygen atom of PAc⁻. There is π - π stacking interaction between two phen rings from two neighbor molecules.

Keywords: phenylacetate Mn (I) complex phenanthroline crystal structure