第5期 2002年5月 Vol. 18, No. 5 May, 2002

ſ

九配位钬 - 三乙四胺六乙酸配合物 K₃[H₀(TTHA)]・5H₂O 的合成及分子结构

王 君* 领 小 张向东 贾卫国 范大民 (辽宁大学化学系,沈阳 110036)

关键词: H₀(皿) 三乙四胺六乙酸(TTHA) 配合物 分子结构 分类号: 0614.24

稀土金属离子氨基多羧酸配合物由于其配位数 和结构的多样性,多年来一直是化学家们所感兴趣 的内容之一[1-3]。例如 Sakagami N. 等人就曾对稀土 金属离子氨基多羧酸配合物做了系统的研究 [4]、总 结出 La (皿)-EDTA 形成十配位结构配合物,Ln (皿) -EDTA (Ln (皿)指 Pr (皿), Nd (皿), Sm (皿), Eu (皿), Gd (皿), Dv (11)和 Ho (11)等) 形成九配位结构配合物, 而 Yb (11) -EDTA 则形成八配位结构配合物。一般情况下、配 合物的配位数和结构是由中心金属离子的离子半 径, 电子结构和氧化态以及配体的形状所决定, 而氨 基多羧酸类配体又是一大类结构各异的化合物、因 此随着稀土金属离子与各种各样氨基多羧酸配合物 的合成与结构的解析、会有更多种配位结构出现。 另外、很多放射性稀土金属离子由于能够发射出特 殊的射线,具有合适的半衰期和适中的能量等优点, 它们的化合物常常用于各种肿瘤的诊断与治疗[5]。 ¹⁰⁶Ho @ 就是其中的一个^[6]。但是放射性金属离子作 为药物或试剂在治疗和诊断时如滞留在体内就会对 人体造成很大的伤害。如能以稳定的配合物形式进 人体内,发挥治疗作用后迅速由体内排除是人们所 希望的。同时为了避免由于放射性药物的全身分布 而产生对人体的毒性、最好的办法是赋予它们对肿 瘤细胞的选择性和亲和性。因此放射性金属离子配 合物的结构修饰更具有潜力[7.8]、它能使很多放射性 药物分子经过结构修饰后有可能用于肿瘤的定向诊 断与定向治疗。与之相关的 Ho (11)配合物结构方面 的研究也由此受到人们的广泛关注^[9]。Ho (III)的离子 半径是 0,1041nm(CN = 9),理论研究表明它能与氨 基多羧酸类配体形成稳定的九配位结构的配合 物^[30~14]。因此本实验中选择了十齿配体 TTHA(三乙 四胺六乙酸)与 Ho (III)按 1:1 的配比进行反应合成 出了含有一个未参与配位的可用于定向修饰的自由 羧酸基的九配位 K₃[Ho(TTHA)]·5H₂O 配合物。这 一结果既证明了理论推断的正确性、同时也为下一 步选择具有定向功能的生物大分子(如单克隆抗体 等)对其进行结构修饰提供了理论依据。

1 实验部分

1.1 K₃[Ho(TTHA)]・5H₂O 配合物的合成

称取 2. 5mmol(1.24g) TTHA 放到 250mL 三口 瓶中, 加人 100mL 水, 加热的同时分批加人 1. 25mmol(0.47g)Ho₂O₃ 粉末,搅拌加热回流 10h.待 Ho₂O₃ 粉末全部溶解后,用KHCO₃ 水溶液调反应液 的 pH 到 5 左右,然后慢慢浓缩到 25mL,在室温下 放置一周后有浅粉色立方状晶体析出。

1.2 K₃[H₀(TTHA)]・5H₂O 配合物的红外光谱测 定

将 TTHA 配体和 K₃[Hoⁿ (TTHA)]・5H₂O 配合 物粉末分别与 KBr 研磨压片,在 Shimadzu-IR408 型 红外光谱仪上测其红外光谱。

- 1.3 K₃[H₀(TTHA)]・5H₂O 配合物的结构测定
 - 切取大小为 0.30 × 0.25 × 0.20mm 的晶体, 在

收稿日期:2001-09-28。收修改稿日期:2001-11-26。

辽宁省科委自然科学基金资助项目(No. 9810300901)。

^{*} 通讯联系人、E-mail. wangjun890@ sina. com

第一作者:王 君、男,41岁,理学博士,教授;研究方向:配合物的合成及结构。

ENRAT-NONIUS CAD-4 型单晶 X- 射线四圆衍射仪 上进行数据收集, Mo Kα 射线 (λ=0.071073nm), ω-2θ扫描方式、温度 293 ± 2K、在 3.72° < 2θ < 50.06°范围内从衍射区 h=-12~9, k=-14~ 14、 l = -27~23 共收集 11567 个衍射数据,其中 5145 个为可观测的独立衍射点 [R(int)= 0.0346]。全部强度数据经过 LP 因子校正及经验吸 收校正、配合物晶体结构由直接法解出。对全部非 氢原子及其各向异性热参数进行全矩阵最小二乘法 修正,最终偏差因子分别为 R₁=0.0395、wR₂= 0.0796(对 $I > 2.0\sigma(I)$ 的衍射点)和 $R_{I} = 0.0546$, wR2=0.0833(对所有的衍射点)。配合物晶体属于 单斜晶系、P21/c空间群、a=1.0290(9) nm、b= 1. 2466(11) nm, c = 2.279(2) nm, $\beta = 91.322(16)$, $V = 2.923(5) \text{ nm}^3$, Z = 4, M = 860.67, $D_c = 1.956 \text{g}$. cm⁻³, μ=3.217mm⁻¹, F(000) = 1720。所有计算工 作在 PDP11/44 和 Pentium MMX/166 计算机上用 SHELXTL-PC 程序完成。

2 结果与讨论

2.1 K₃[Ho(TTHA)]·5H₂O 配合物的组成

K₃[H₀(TTHA)] • 5H₂O 配合物的元素分析结果 (%): K 13.66, Y 19.11, C 25.10, H 4.01, N 6.48。 按化学式 K₃[H₀(TTHA)] • 5H₂O 的计算结果(%): K 13. 63, Y19. 16, C 25. 12, H 3. 98, N 6. 51。通过对 比可知配合物的元素分析测试结果和计算结果一 致。

2.2 K₃[Ho(TTHA)], 5H₂O 配合物的红外光谱

 K_{s} [Ho(TTHA)] • 5H₂O 配合物中 $\nu_{(C-N)}$ 为 1105 cm⁻¹, 比配体的 1128cm⁻¹ 红移 23cm⁻¹, 表明配体中 氮原子与 Ho^{II}离子配位。配体 ν_{ss} (coor) 的 1736cm⁻¹ 在配合物中消失, 红移至 1630cm⁻¹, 说明配合物中 有未配位的羧酸基; ν_{ss1} (coor) 的 1642cm⁻¹ 红移至 1615cm⁻¹; 配体 ν_{s} (coor) 的 1389cm⁻¹ 在配合物中紫移 至 1410cm⁻¹, 表明羧基氧原子与 Ho^{II}离子配位。在 3400cm⁻¹ 附近有宽峰, 是水分子的羟基伸缩振动, 说明配合物中有水分子。

2.3 K₃[H₀(TTHA)] · 5H₂O 配合物的分子结构与 晶体结构

K₃[Ho(TTHA)]·5H₂O 配合物的分子结构如图 1 所示、在单位晶胞中的排列如图 2 所示。所有非氢 原子坐标列于表 1 中。部分键长和键角列于表 2 和 表 3 中。

从图 1 中可以看出 Ho (m)离子与 TTHA 配体形 成的是 1:1 配比的配合物,整个 K₃[Ho(TTHA)]・ 5H₂O 配合物中, Ho (m)离子与来自 TTHA 配体中的

表 1 K₃[H₀(TTHA)]・5H₂O 配合物中非氢原子的座标和热参数

Table 1Nonhydrogen Fractional Atomic Coordinates (×104) and Equivalent Isotropic TemperatureFactors (Å2×103) (Ueq) of K3 [Ho(TTHA)] · 5H2O

atom	x	· · · · ·	z	Ueq	atom	π	y	z	Ueq
Ho(1)	2519(1)	2662(1)	3694(1)	18(1)	0(15)	3083(6)	8591(4)	3343(2)	59(2)
K (1)	2079(1)	4932(1)	5017(1)	31(1)	0(16)	3288(5)	8636(3)	4885(2)	43(1)
K(2)	1404(1)	7687(1)	4118(1)	34(1)	0(17)	3772(9)	3063(5)	6245(3)	1 26(4)
K(3)	3102(1)	1479(1)	5445(1)	32(1)	C(1)	419(6)	2961(4)	4686(3)	21(1)
N(1)	L97(4)	1761 (4)	3821(2)	22(1)	C(2)	- 479(5)	2504(4)	4219(3)	23(1)
N(2)	1077(5)	2666(4)	2683(2)	25(1)	C(3)	- 777(6)	- 8(5)	4202(3)	27(1)
N(3)	3330(5)	4087(4)	2890(2)	23(1)	C(4)	414(6)	701(4)	4099(3)	26(1)
N(4)	4994(5)	2487(3)	3502(2)	23(1)	C(5)	-534(6)	1655(5)	3259(3)	26 (1)
O (1)	1638(4)	2799(3)	4638(2)	23(1)	C(6)	- 307(6)	2597(5)	2858(3)	29 (1)
0(2)	- 76(4)	3508(3)	5076(2)	30(1)	C(7)	2152(6)	871(5)	2646(3)	30(2)
0(3)	- 1897(4)	394(3)	4227(2)	40(1)	C(8)	1429(6)	1724(5)	2315(3)	28(2)
0(4)	- 541(4)	- 978(3)	4276(2)	46 (1)	C(9)	1277(6)	3655(4)	2346(3)	28(2)
0(5)	2688(4)	1130(3)	3129(2)	29 (1)	C(10)	2711(6)	3906(5)	2310(3)	28(1)
0(6)	2225(5)	- 34(3)	2420(2)	44(1)	C(11)	1655(6)	5103(5)	3452(3)	24(1)
0(7)	1307(4)	4217(3)	3661(2)	24(1)	C(12)	2924(6)	5139(4)	3119(3)	29(2)
0(8)	1048(4)	5950(3)	3505(2)	33(1)	C(13)	4772(6)	4029(5)	2831(3)	31(2)
0(9)	3649(4)	1363(3)	4280(2)	25(1)	C(14)	5254(6)	2893(5)	2910(3)	30(2)
0(10)	4806(4)	- 138(31	4166(2)	34(1)	C(15)	4988(6)	4060(5)	4187(3)	26(1)
0(11)	3765(4)	3930(3)	4210(2)	27(1)	C(16)	5732(6)	3113(5)	3944(3)	26(1)
0(12)	5575(4)	4870(4)	4350(2)	41(1)	C(17)	5321(6)	1340(4)	3564(3)	25(1)
0(13)	1554(5)	4886(4)	6204(2)	49(1)	C(18)	4532(5)	806(5)	4044(3)	23(1)
0(14)	3689(5)	6500(4)	4479(2)	51(1)					

王 君等:九配位钬 - 三乙四胺六乙酸配合物 K₃[Ho(TTHA)] • 5H₃O 的合成及分子结构

表 2 K ₃ [H ₀ (TTHA)] · 5H ₂ O 配合物中键长和键角											
Table 2	Selected Bo	nd Distances(nm) and	Angles(°) in H	G[Ho(TTHA)] · 5H ₂	0						
Ho(1)-O(1)	2.359(4)	Ho(1)-O(5)	2.312(4)	Ho(1)-O(7)	2.304(4)						
$H_0(1)-O(9)$	2.384(4)	$H_0(1) - O(11)$	2.334(4)	$H_{0}(1)-N(1)$	2.662(5)						
Ho(1)-N(2)	2.713(5)	Ha(1)-N(3)	2.699(5)	Ho(1)-N(4)	2,604(5)						
O(1)-H₀(1)•O(5)	127.07(14)	O(1)-Ho(1)-O(7)	75.57(14)	O(1)-Ho(1)-O(9)	74, 43(14)						
O(1)-H₀(1)-O(11)	73.20(14)	O(1)-Ho(1)-N(1)	64.33(14)	$O(1)-H_0(1)-N(2)$	124. 10(15)						
O(1)-Ho(1)-N(3)	134.71(14)	O(1)-Ho(1)-N(4)	123. 90(14)	$O(5)-H_0(1)-O(7)$	136.35(15)						
$O(5)-H_0(1)-O(9)$	73.05(15)	$O(5)$ -H $_0(1)$ - $O(11)$	142.32(15)	$O(5)-H_0(1)-N(1)$	77.95(15)						
O(5)-Ho(1)-N(2)	64. 84í 14)	O(5)-Ho (1) -N (3)	97.84(16)	O(5)-Ho(1)-N(4)	75.53(14)						
O(7)-HJ(1)-O(9)	147. 83 (14)	0(7)-Ho(1)-O(11)	74 82(15)	O(7)·H₀(1)-N(1)	82.67(15)						
O(7)-Ho(1)-N(2)	71.66(14)	O(7)-Ho(1)-N(3)	66.41(15)	O(7)-H₀(1)-N(4)	126.54(13)						
O(9)-Ho(1)-O(11)	85.61(15)	$O(9)-H_0(1)-N(1)$	94.57(15)	$O(9) - H_0(1) - N(2)$	136.63(14)						
$O(9)-H_0(1)-N(3)$	132.28(15)	$O(9)-H_0(1)-N(4)$	64.60(14)	O(11)-Ho(1)-N(1)	135.65(15)						
O(11)-Ho(1)-N(2)	135. 19(15)	O(11)-H₀(1)-N(3)	73.83(16)	$O(11)-H_0(1)-N(4)$	67.26(14)						
N(1)-Ho(1)-N(2)	67.57(15)	$N(1)-H_0(1)-N(3)$	130.09(15)	N(1)-Ho(1)-N(4)	150.09(14)						
N(2)-Ho(1)-N(3)	65.97(15)	$N(2)-H_0(1)-N(4)$	112.00(15)	N(3)-Ho(1)-N(4)	67.75(14)						

图 1 【Ho(TTHA)]³⁻的分子结构

Fig. 1 Molecular structure of [Ho(TTHA)]³⁻

图 2 K₃[Ho(TTHA)]、5H₂O 配合物在单位晶胞中的排列 Fig. 2 Arrangement of K₃[Ho(TTHA)]、5H₂O in unit cell

四个氨基 N 原子和五个羧酸基 O 原子形成配键。尽 管 TTHA 是一个十齿配体,由于 Ho m的离子半径是 0.1041nm,因此(如果结构中所有螯合环都为五元 环时) 只能与 TTHA 配体中的九个配位原子结合形 成九配位结构化合物、因此 K₃[Ho(TTHA)]・5H₂O 的九配位三帽三角棱柱体结构。这与我们关于原子 半径与配位数之间关系的推论是相符合的。结构中 配位原子 0(5), 0(9), N(1), O(7), O(11) 和 N(3) 分 别形成两个近似平行的三角形(0(5),0(9)和N(1) 为一组, O(11), N(3)和 O(7)为另一组)构成了一个 三角棱柱体。O(1), N(2)和 N(4)分别位于三角棱柱 体三个四边形平面的上方 (这三个平面分别由 O(5)、N(1)、O(7) 和 O(11), N(1)、O(9)、N(3) 和 0(7)及0(5)、0(11)、N(3)和0(9)构成)。三个角度 $((O(1) - H_0(1) - N(2) = 124, 10(15)^\circ, \angle O(1) - H_0(1))$ $-N(4) = 123, 90(14)^{\circ}$ 和 ∠ $N(2) -H_0(1) -N(4) =$ 112.00(15)°) 之和正好是 360°, 证明这三个配位原 子以 Ho^{II}为中心处于同一平面。另外、结构中有一个 未参与配位的自由羧酸基, O(3)-C(3)和 O(4)-C(3) 键长分别为 1.259(7) nm 和 1.245(7) nm, 介于配位 和未配位的 O-C 键长之间。这个自由羧酸基 (-CH₃COO⁻)即是可用于定向修饰的基团。

K₃[Ho(TTHA)]·5H₂O 配合物中三个 K 离子中 K(1)离子是八配位的, K-O 之间平均距离是 0.2885 (6)nm(其中最长距离和最短距离分别为 0.3296(6) nm 和 0.2772(5)nm),另外两个(K(2)和 K(3)离子) 是六配位的, K-O 之间平均距离分别为 0.2741(5) nm(其中最长距离和最短距离分别为 0.2882(5) nm 和 0.2599(5)nm)和 0.2794(5)nm(其中最长距离和 最短距离分别为 0.2870(4)nm 和 0.2732(5)nm)。K (1)和 K(2)之间距离为 0.4050(3)nm, K(2)和 K(3) 之间距离为 0.4877(5)nm。

图 2 显示单位晶胞中有 4 个 K₃[Ho(TTHA)] · 5H₂O 配合物分子。晶胞中结晶水与结晶水,结晶水 与三乙四胺六乙酸配体中的氧原子以及结晶水与配 位水之间都形成氢键。整个晶胞由配合物分子之间 通过氢键连接成的网状构成。

3 结 论

合成了稀土金属 Ho (m离子与 TTHA 配体的配合物, 经元素分析和单晶 X-射线四圆衍射仪的结构测定,确定其配合物的组成为 K₃[Ho(TTHA)]· 5H₂O。Ho(TTHA)]³⁻配合离子中的 Ho (m离子与 TTHA 配体中的四个氨基 N 原子和五个羧酸基 O 原 子构成九配位三帽三角棱柱体结构, 三个配位原子 位于三角棱柱体三个平面的上方。另外, 结构中还 有一个未参与配位可用于修饰的自由羧酸基存在。

参考文献

[1] Lind M. D., Lee B., Hoard J. L. J. Am. Chem. Soc., 1965, 87, 1161.

- [2] Nakamura K., Kurisaki T., Wakita H., Yamaguchi T. Acta Crystallogr., Sect. C, 1995, 51, 1559.
- [3] Calogovic D. M. Acta Crystallogr., Sect. C, 1988, 44, 435.
- [4] Sakagami N., Yamada Y., Konno T., Okamoto K. Inorg. Chim Acta, 1999, 288, 7.
- [5] Jurisson S., Berning D., Jia W., Ma D. Chem. Rev., 1993, 93, 1137.
- [6] Verbruggen A. M. J. Nucl. Med., 1990, 17, 346.
- [7] Widder K. J., Morris R. M., Poore G. et al Proc. Natl. Acad., Sci. USA, 1981, 78, 579.
- [8] Tomlinson E. Int. J. Pharm. Technol. Prod. Manuf., 1983, 4, 49.
- [9] Templeton L. K., Templeton D. H., Zalkin A. Acta Grystallogr., Sect. C, 1985, 41, 355.
- [10] WANG Jun (王 君), ZHANG Wei-Qun (张维群), ZHANG Xiang-Doug (张向东) Gaodeng Xuexiao Huaxue Xuebao (Chem. J. of Chinese University), 1998, 19(4), 517.
- [11] Miyoshi K., Wang J., Mizuta T. Inorg. Chim. Acta, 1995, 228, 165.
- [12]WANG Jun (王 君), ZHANG Wei-Qun (张维群), ZHANG Xiang-Dong(张向东) Xiyou Jinshu(Chinese Rare Metal), 1998, 17, 213.
- [13]WANG Jun(王 君), ZHANG Wei-Qun(张维群), SONG Xi-Ming(宋溪明), ZHANG Xiang-Dong(张向东) Wuji Huaxue Xuebao(Chinese J. Inorg. Chem.), 1998, 14(1), 96.
- [14] WANG Jun(王 君), GAO Jing-Qun(高敬群), ZHANG Xiang-Dong(张向东) Wuji Huaxue Xuebao(Chinese J. Inorg. Chem.), 1999, 15(1), 135.

Synthesis and Molecular Structure of Nine-Coordinate Complex K₃[Ho(TTHA)] · 5H₂O

WANG Jun* LING Xiao ZHANG Xiang-Dong JIA Wei-Guo FAN Da-Min (Department of Chemistry, Liaoning University, Shenyang 110036)

In this paper, the molecular and crystal structures of the $K_3[Ho(TTHA)] \cdot 5H_2O(TTHA = triethylenete-traminehexaacetic acid) are given. The crystal data are as follows: monoclinic system, <math>P_{21}/c$ space group, a = 1.0290(9) nm, b = 1.2466(11) nm, c = 2.279(2) nm, $\beta = 91.322(16)^{\circ}$, V = 2.923(5) nm³, Z = 4, M = 860.67, $D_c = 1.956 \text{gcm}^{-3}$, $\mu = 3.217 \text{mm}^{-1}$, F(000) = 1720. The final R_1 and wR_2 are 0.0395 and 0.0796 for 5145 $[I > 2.0 \sigma(I)]$ unique reflections and 0.0546 and 0.0833 for all 11567 reflections, respectively. In the title complex, the anion $[Ho(TTHA)]^{3-}$ has a nine-coordination structure with distorted tricapped trigonal prism. A TTHA having four N atoms of amido groups and six O atoms of carboxylic groups acts as a enneadentate ligand with four N atoms and five O atoms. In addition, there is a free non-coordinated carboxyl group (-CH₂COO⁻) in the complex anion $[Ho(TTHA)]^{3-}$. The free carboxyl group could be embellished by some biological molecules which have selectivity and affinity to tumor cell. Then the ¹⁶⁶Ho^{III} TTHA complex may become radioactive anti-tumor drug having targeting function.

Keywords: Ho (10) triethylenetetraminebexaacetic acid (TTHA) complex molecular structure