第7期 2002年7月 Vol. 18, No. 7 Jul., 2002

, 研究简报

钴配合物的合成晶体结构及活性研究

朱 莉^{*、1} 廖展如² 王哲明³ 严纯华³
 ('湘潭师范学院,湘潭 412100)
 (²华中师范大学,武汉 430070)
 (³北京大学化学学院,北京 100871)

关键词:	双核钴配合物	晶体结构	超氧化物歧化酶
分类号:	0614.81*2		

钴是人体内一种必需的微量元素,在生物体内 均以配合物的形式存在¹¹。关于钴的配合物的研究 在药理学、配位化学以及生物无机化学方面均具有 重要意义。由于它可作为一种优良的探针离子,取 代金属蛋白和金属酶中 Zn (II)、Mn (II)、Fe (II)、Cu (II)、 Mg (II)等离子,而具有载氧、氧化还原、水解等作用. 因此、含钴金属酶模型化合物的研究是个很活跃的 领域。我们合成了以 N, N, N', N'- 四(2-苯并咪唑甲 基)-1,4-二乙氨基乙二醚(EGTB)为配体的一种双 核钴配合物[Co₂Cl₂(EGTB)](ClO₄)₂·5H₂O,并测得 其晶体结构,具有这种配体的双核钴配合物的晶体 结构在国内外均未见报导。并用核黄素光照法应用 于配合物动力学研究,所得结果表明该配合物是超 氧化物歧化酶的一种好的功能模型化合物。

1 实验部分

1.1 试剂和仪器

除邻苯二胺为化学纯外,其余试剂和溶剂均为 分析纯,所用仪器为 Perkin-Elmer2400型元素分析 仪(美国), Brucker IFS 66V 真空型傅里叶变换红外 光谱仪。Nonius Kappa CCD 四圆衍射仪。

1.2 配合物的合成与表征

配体 EGTB 根据文献^[2]合成,其化学结构式见图 1。将 1.5mmol,(1.13g)配体,溶于无水甲醇中,加 入含 CoCl₂·6H₂O, 3.7mmol(0.9g)的甲醇溶液,再

- 图 1 N, N, N', N'-四(2-苯并咪唑甲基-1, 4-二乙氨基乙二醚)
- Fig. 1 [N, N, N', N'-tetrakis(2-benzimidazolyl methyl-1, 4-diethylene amino)-glycol ether

加入 NaClO₄(3.4mmol, 0.5g) 甲醇溶液, 室温搅拌 5h, 有紫色沉淀析出, 静置 1h 过滤, 得紫色沉淀, 以 水、乙醇、乙醚依次洗涤, 红外干燥得紫色粉末. 针尖 状, 将其用甲醇溶解, 溶剂自然挥发, 得紫罗兰立方 体晶体。配合物[Co₂Cl₂(EGTB)](ClO₄)₂·5H₂O 元素 分析结果(%): 实测值(理论值): C: 40.7957 (39.77); N: 11.75 (12.2); H: 4.775(4.37); (M =1146.54)。

1.3 晶体结构测定

选取大小为 0.28×0.28×0.16mm³ 的单晶进 行晶体结构测定。在 Nonius Kappa CCD 衍射仪上, 用石墨单色器单色化的 Mo $K\alpha$ (λ = 0.071073nm) 射 线,在3.52° < θ < 27.50°范围内,共收集衍射点 75531 个,其中独立衍射点 11408 个, $I > 2\sigma(I)$ 的 6392 个用于结构解析和修正, h: -18~18, k: -32~32, l: -18~18。所得晶体属于单斜晶系,

收稿日期:2001-12-02。收修改稿日期:2002-04-05。 国家自然科学基金资助项目(No. 29771012)。

^{*} 通讯联系人。E-mail: zl6942@ sina. com

第一作者:朱 莉,女,33岁,讲师;研究方向:生物无机。

第18卷

P21/c空间群。晶体学参数为: a = 1.42231(2)n	m,
$b = 2.53181(3)$ nm, $c = 1.43392(2)$ nm, β	} =
$102.0518(5)^{\circ}$, $V = 5.04976(12)$ nm ³ , $Z = 4$, D	=
1.508g · cm ⁻³ , μ (Mo $K\alpha$) = 0.941mm ⁻¹ , $F(000)$	=
2360。晶体结构由直接法解出,全部H原子均由	差
值 Fourier 合成得到, H 原子参与坐标及各向同性	热
参数修正。最终偏离因子 $R_1 = 0.0788$, w $R_2 = 0.23$	52,
$w = [\sigma^2(F_0^2) + (0.1566P)^2] + 3.50P, \ddagger + F$	' =
(F ₀ ² + 2 F _c ²)/3。单晶结构解析和结构优化使	用

SHELXS-97(Sheldrik, 1997)程序完成。所得非氢原 子坐标和热参数、键长和键角分别列于表 1 和表 2, 该分子结构如图 2 所示。

2 结果与讨论

2.1 晶体结构

结构分析表明、晶胞中含有4个化学式量的分子[Co₂Cl₂(EGTB)](ClO₄)₂·5H₂O,每个分子由一个 配位正离子[Co₂Cl₂(EGTB)]²⁺,2个ClO₄⁻,5个结晶

表1	部分非氦原子坐标及执参数
12 1	前方 非氧示了 主你及需岁女

Table 1	Nonhydrogen A	tomic (Coordinations (× 10 ⁴	')and	Equivalent	Isotropic	Temperature	Factors (nm ²	· × 10 ⁴	5)

atom	Х	Y	Z	U(eq)	atom	X	Y	Z	U(eq)
Cu(1)	2698(1)	4269(1)	4764(1)	48(1)	C(24)	884(4)	5579(3)	1460(4)	61(1)
C1(2)	2780(1)	5295(1)	1232(1)	48(1)	C(25)	745(4)	4736(2)	1158(4)	57(1)
C1(1)	3242(1)	5046(1)	5500(1)	60(1)	C(26)	881(5)	4214(3)	991(4)	66(2)
Cl(2)	3251(1)	4536(1)	574(1)	70(1)	C(27)	89(6)	3882(3)	928(5)	86(2)
C1(3)	4149(2)	6923(1)	4917(2)	159(2)	C(28)	- 803(5)	4070(4)	1016(5)	84(2)
Cl(4)	829(3)	2817(1)	6861(4)	185(2)	C(29)	- 954(5)	4587(4)	1165(5)	86(2)
N(1)	3120(3)	3713(2)	5785(3)	57(1)	C(30)	- 152(4)	4925(3)	1249(4)	66(2)
N(2)	3480(4)	2890(2)	6234(4)	76(2)	C(31)	2915(5)	6497(2)	1675(4)	66(2)
N(3)	2237(3)	3501(2)	3976(3)	57(1)	C(32)	3133(4)	6370(2)	720(4)	54(1)
N(4)	1297(3)	4411(2)	4173(3)	56(1)	C(33)	3402(4)	5925(2)	-488(4)	54(1)
N(5)	- 156(4)	4110(3)	3552(4)	74(2)	C(34)	3502(4)	5547(3)	- 1155(4)	64(2)
N(6)	1389(3)	5165(2)	1294(3)	58(1)	C(35)	3694(5)	5720(3)	-2011(5)	76(2)
N(7)	- 45(3)	5438(2)	1434(3)	70(1)	C(36)	3829(6)	6247(4)	-2179(5)	90(2)
N(8)	2384(3)	6046(2)	1952(3)	55(1)	C(37)	3734(6)	6627(3)	- 1523(5)	85(2)
N(9)	3160(3)	5885(2)	410(3)	51(1)	C(38)	3513(4)	6457(2)	- 691(4)	64(2)
N(10)	3330(4)	6723(2)	99(4)	69(1)	0(1)	3586(3)	5226(2)	2613(3)	57(1)
C(1)	3530(4)	3703(2)	6769(4)	58(1)	O(2)	3477(3)	4272(1)	3677(3)	54(1)
C(2)	3676(4)	4101(3)	7432(4)	67(2)	O(3)	- 1688(5)	6104(5)	1301(6)	185(4)
C(3)	4100(5)	3966(3)	8375(5)	80(2)	O(4)	1761(10)	7430(7)	3079(13)	296(7)
C(4)	4325(5)	3461(4)	8631(5)	96(3)	0(5)	- 1468(7)	3249(4)	3189(10)	238(6)
C(5)	4165(6)	3056(3)	7979(6)	92(2)	0(6)	1470(30)	1975(10)	4810(30)	330(20)
C(6)	3754(5)	3179(3)	7037(4)	71(2)	0(7)	- 920(30)	2351(8)	4490(20)	350(20)
C(7)	3123(4)	3214(2)	5504(4)	66(2)	0(8)	3370(12)	1795(3)	5889(8)	263(8)
C(8)	2790(6)	3060(2)	4490(5)	76(2)	0(31)	4753(10)	6527(5)	4915(11)	148(2)
C(9)	1211(5)	3454(3)	3960(5)	74(2)	0(32)	3516(10)	7100(6)	4175(10)	148(2)
C(10)	781(4)	3978(3)	3888(4)	63(2)	0(33)	4974(9)	7409(5)	4904(11)	148(2)
C(11)	659(4)	4834(3)	4016(4)	59(1)	O(34)	3944(11)	7136(6)	5779(9)	148(2)
C(12)	816(5)	5371(1)	4196(4)	65(2)	0(35)	4158(11)	6956(6)	3872(8)	148(2)
C(13)	20(5)	5694(3)	3954(5)	79(2)	0(36)	3250(9)	7135(6)	4953(12)	148(2)
C(14)	- 890(6)	5502(4)	3583(5)	93(2)	0(37)	4854(9)	7236(6)	5407(11)	148(2)
C(15)	- 1060(5)	4980(4)	3417(5)	86(2)	O(38)	4190(11)	6400(5)	5152(11)	148(2)
C(16)	- 255(4)	4644(3)	3627(4)	67(2)	O(41)	1014(15)	3103(8)	6132(13)	214(3)
C(17)	2427(4)	3579(2)	3024(4)	65(2)	0(42)	1656(12)	2767(8)	7664(13)	214(3)
C(18)	3399(5)	3820(2)	3056(4)	67(2)	0(43)	405(14)	2309(6)	6801(16)	214(3)
C(19)	4370(4)	4557(2)	3753(4)	57(1)	O(44)	85(13)	3128(8)	7263(15)	214(3)
C(20)	4400(4)	4877(2)	2874(4)	58(1)	O(45)	1405(14)	3257(2)	6848(17)	214(3)
C(21)	3626(5)	5679(2)	3225(4)	63(2)	O(46)	527(15)	2632(9)	7643(12)	214(3)
C(22)	2643(5)	5929(2)	2973(4)	64(2)	0(47)	- 52(12)	2894(8)	6097(13)	214(3)
C(23)	1327(4)	6112(2)	1623(4)	69(2)	O(48)	1287(14)	2375(7)	6438(14)	214(3)

· 733 ·

第7期

朱 莉等: 钴配合物的合成晶体结构及活性研究

	쿡	長2 配合物部分键长	和部分键角数据		
	Table 2	Selected Bond Leng	gths(nm) and An	gles(°)	
Co(1)-Co(2)	0.57138(10)	Co(1)-N(1)	0.2029(4)	Co(1)-N(4)	0.2029(4)
$C_{0}(1) - O(2)$	0.2091(4)	Co(1)-N(3)	0.2277(4)	$C_0(1) - Cl(1)$	0.22874(15)
$C_{0}(2) - N(6)$	0.2026(5)	$C_{0}(2) - N(9)$	0.2046(4)	$C_{0}(2) - O(1)$	0.2078(4)
Co(2)-N(8)	0.2291(4)	Co(2)-Cl(2)	0.23000(15)		
N(1)-Co(1)-N(4)	122.70(18)	$N(1)-C_0(1)-O(2)$	114.68(17)	$N(4)-C_0(1)-O(2)$	108.36(16)
$N(1)-C_0(1)-N(3)$	77.09(17)	$N(4)-C_0(1)-N(3)$	77.72(18)	O(2)-Co(1)-N(3)	77.02(15)
N(1)-Co(1)-Cl(1)	104.04(14)	$N(4)-C_0(1)-Cl(1)$	104.41(14)	O(2)-Co(1)-Cl(1)	99.24(10)
$N(3)-C_0(1)-Cl(1)$	176.18(13)	$N(6)-C_0(2)-N(9)$	121.44(18)	N(6)-Co(2)-O(1)	107.12(17)
N(9)-Co(2)-O(1)	116.75(16)	N(6)-Co(2)-N(8)	77.29(18)	$N(9)-C_0(2)-N(8)$	76.81(16)
O(1)-Co(2)-N(8)	77.18(15)	$N(6)-C_0(2)-Cl(2)$	104.71(15)	N(9)-Co(2)-Cl(2)	103.87(13)
O(1)-Co(2)-Cl(2)	99.85(11)	N(8)-Co(2)-Cl(2)	176.87(12)	C(7)-N(1)-C(1)	105.1(4)
C(7)-N(1)-Co(1)	117.4(4)	$C(1)-N(1)-C_0(1)$	137.1(4)	C(17)-N(3)-Co(1)	105.0(3)
C(8)-N(3)-Co(1)	109.3(3)	C(11)-N(4)-Co(1)	138.9(4)	C(24)-N(6)-Co(2)	116.9(4)
C(25)-N(6)-Co(2)	137.0(4)	C(22)-N(8)-Co(2)	104.4(3)	C(23)-N(8)-Co(2)	106.1(3)
$C(32)-N(9)-C_0(2)$	117.4(4)	C(31)-N(8)-Co(2)	109.6(3)	C(33)-N(9)-Co(2)	136.5(4)
C(21)-O(1)-Co(2)	117.3(3)	C(20)-O(1)-Co(2)	123. 5(3)	C(18)-O(2)-Co(1)	118.3(3)
$C(10) = O(2) = C_0(1)$	122 6(3)				

图 2 配合物[Co₂Cl₂(ECTB)](ClO₄)₂·5H₂O的分子 结构

Fig. 2 Molecule structure of complex $[Co_2Cl_2(EGTB)](ClO_4)_2 \cdot 5H_2O$

水分子组成。由图 2 可知在正离子部分,有两个钴(II) 离子,Co(1)与 Co(2)相距 0.57138nm(0.00010),它 们是通过 EGTB 配体上的两个醚氧桥连,Co(1)与 EGTB 配体上的 N(1)、N(3)、N(4)、O(2)以及 Cl(1) 配位,Co(2)与 EGTB 上的 N(8)、N(9)、N(6)、O(1) 以及 Cl(2)配位,都是五配位结构。N(4)、N(1)、O (2)以及 N(6)、N(9)、O(1)分别构成了两个赤道平 面,由 N(3)-Co(1)-Cl(1)为 176.18(13)°,N(8)-Co (2)-Cl(2)176.87(12)°可推测出,Cl(1)、N(3)以及 Cl(2)、N(8)位于轴向位置,构成了三角双锥。从表 2 数据看出钴配合物中 Co-O 键长约为 0.21nm,Co-Cl 键长约为 0.23nm, Co (II)与烷胺氮之间的键长约为 0.23nm, Co(II)与苯并咪唑氮的距离约为 0.20nm, 苯 并咪唑氮由于较烷胺氮供电子能力要强些,其与金 属离子的键长要小些,这些均与文献[3.4]报道的双核 钴配合物的键长数据一致。两个赤道平面的键角为: $N(1) - Co(1) - N(4) 122.70(18)^{\circ}, N(1) - Co(1) - O(2)$ 114. 68(17)°, N(4) -Co(1) -O(2) 108. 36(16)°. N(6) -Co(2)-O(1)107.12(17)°, N(9)-Co(2)-O(1)116.75 (16)°, N(6) -Co(2) -N(9) 121. 44(18)°。Co(1) 和 Cl (1) 与赤道平面 N(1)、N(4)、O(2) 的键角为 99.24° ~104°, Co(1)和N(3)与赤道平面N(1)、N(4)、O(2) 的键角约为 77°。Co(2) 和 Cl(2) 与赤道平面 N(6)、N (9)、O(1)的键角为 99.85°~105°, Co(2) 和 N(8) 与 赤道平面 N(6)、N(9)、O(1)的键角为 77°左右。由以 上数据可看出两个金属离子配位的几何构型为变形 三角双锥构型。

通过分析配合物[Co₂(EGTB) Cl₂](ClO₄)₂. 5H₂O 的晶体结构,发现其与文献^[5,6]报道的天然 SOD 的活性结构很相似:(1) Co(1)…Co(2) 相距为 0.57138nm(0.00010),而天然 Cu-ZnSOD 的中心金 属离子相距 0.54nm,(2)每个 Co(II)离子均采取五配 位,为变形的三角双锥形,而天然的 Mn-SOD 活性中 心金属离子的配位数为五,为变形的三角双锥形. Cu-ZnSOD 中的 Cu 的配位数为五,为四方锥形(三 角锥形易转变成四方锥形),(3)由于天然 SOD 活性 中心的金属离子大多与组氨酸(His)咪唑基氮,以及 天门冬氨酸羧基氧配位,我们设计的配体 EGTB 是 以 N、O 配位的富含苯并咪唑基的多齿配体,合成的 配合物与天然 SOD 的酶的配位环境相近,因而推测 该配合物可能具有超氧化物歧化酶的活性。

2.2 SOD 活性

根据文献印报导的方法测定了模型化合物的拟 SOD 活性, 在 pH 7.8 的磷酸缓冲溶液中, 恒定光源 照射核黄素 (O_2^{-1}) 源) - 四甲基乙二胺 (供氢体) - NBT (硝基蓝四氮唑, Nitroblue tetrazolium) 混合溶液, 核 黄素产生的 O2-"作为电子传递体,把电子传递给 NBT, 使 NBT 还原成蓝色甲脂, 引起 560nm 处吸光 值(A)线性积累, SOD 和拟 SOD 活性化合物歧化 O2⁻⁻ 与 NBT 竞争 O2⁻⁻, 因此抑制 NBT 还原, 从而降 低 560nm 吸光值的增长速率($\Delta A / \Delta t$),在 SOD 及其 模拟物存在的情况下忽略 O_2^{-1} 的自发歧化。设 $\rho =$ v_o/v_o(v_o和 v_o分别为无和有 SOD 及其模拟物存在 时 560nm 吸光值增长速率),则表观催化反应速率 常数为: K_Q = K_N[NBT](1/ρ-1)/[Q], 23℃, pH = 7.8时, $K_N = 6 \times 10^4 \text{ mol}^{-1} \cdot \text{L} \cdot \text{s}^{-1[8]}$, [NBT] 和 [Q] 分别为硝基蓝四氮唑和 SOD(或其模型化合物)的 浓度, 测得配合物 [Co₂Cl₂(EGTB)](ClO₄)₂ · 5H₂O 在 浓度为 2.510mol · L⁻¹ 时, 催化 O₂⁻¹ 歧化速率常数 为 $K_Q = 1.875 \times 10^6 \text{mol}^{-1} \cdot \text{L} \cdot \text{s}^{-1}$, Cu-ZnSOD 催化 O₂⁻⁻ 歧化速率常数为 1.0×10⁹mol⁻¹·L·s⁻¹, 说明

配合物确实具有一定的超氧化物歧化酶活性。

参考文献

- Hay R. W. Bio-inorganic Chemistry, Ellis Horwood Limited Publishers: Chichester, 1984.
- [2] Hendriks H. M. J., Birker P. J. M. W. L., Van Rijn J., Verschoor G. C., Reedijk J. J. Am. Chem. Soc., 1982, 104, 3607.
- [3] He Chuan, Lippard S. J. J. Am. Chem. Soc., 1998, 120, 105.
- [4] Williams N. H., Lebuis A. -M., Chin J. J. Am. Soc., 1999, 121, 3341.
- [5] FANG Yun-Zhong(方允中), Ll Weng-Jie(李文杰) Free Radical and Enzyme-Foundation Theories and its Application in the Biology and Medical Science, Second Edition(自由基 与酶-基础理论及其在生物学和医学中的应用.第二版) Beijing: Science Press, 1994.
- [6] Kaim W., Rall J. Angew Chem. Int. Ed. Engl., 1996, 35, 43.
- [7] LUO Qin-Hui(罗勤慧), SHENG Meng-Chang(沈孟长),
 GAO Wei(高 伟) et al Gaodeng Xuexiao Huaxue Xuebao (Chem. J. Chinese Universities), 1990, 11(9), 928.
- [8] Bielski B. H. J., Richter H. W. J. Am. Chem. Soc., 1977. 99, 3019.

Synthesis and Crystal Structure of Bicobalt (II) Complex and Study of Activity

ZHU Li^{*.} LIAO Zhan-Ru² WANG Zhe-Ming³ YAN Chun-Hua³ (¹Department of Chemistry, Xiangtan Normal University, Xiantan 411100)

(² Department of Cchemistry, Huazhong Normal University, Wuhan 430070)

(³ Chemistry College of Peking University, Beijing 100871)

The complex $[Co_2Cl_2(EGTB)] \cdot (ClO_4)_2 \cdot 5H_2O$ was synthesized in methanol-aqueous solution and its crystal structure was determined by X-ray diffraction method. The crystal belongs to monoclinic with space group of $P2_1/c$. The cell parameters are a = 1.42231(2) nm, b = 2.53181(3) nm, c = 1.43392(2) nm, $\beta = 102.0518(5)^\circ$, Z = 4, F(000) = 2360, $D_c = 1.508g \cdot cm^{-3}$, The final R = 0.0788, $wR_2 = 0.232$, The catalytic rate constant of the dismutation of superoxide radicals has been obtained by means of photo reduction of nitroblue tetrazolium (NBT), and it is 1.875×10^6 mol⁻¹ \cdot L \cdot s⁻¹.

Keyword: binuclear cobalt (II) complex crystal structure superoxide dismutase