Vol. 18, No. 8 Aug., 2002

研究简报

混合价三核锰配合物 Mn₃O(O₂CCCl₃)₆(py)₂(H₂O)的合成、 晶体结构及磁性

黄 辉^{1,2} 王天维¹ 李一志¹ 游效曾^{*,1} (¹南京大学配位化学研究所,配位化学国家重点实验室,南京 210093) (²内江师范学院化学系,内江 641002)

关键词: 晶体结构 混合价 锰配合物 磁性 分类号: 614、7⁺11

Synthesis, Crystal Structure and Magnetic Property of a New Mixed-Valence Trinuclear Oxo-Centered Manganese Complex $Mn_3O(O_2CCCl_3)_6(py)_2(H_2O)$

HUANG Hui^{1,2} WANG Tian-Wei¹ LI Yi-Zhi¹ YOU Xiao-Zeng^{*,1}

(¹ Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093) (² Department of Chemistry, Neijiang Normal College, Neijiang 641002)

A new mixed-valence trinuclear oxo-centered manganese complex $Mn_3O(O_2CCCl_3)_6(py)_2(H_2O)$ was prepared by the reaction of NⁿBu₄MnO₄ with $Mn(OAc)_2 \cdot 4H_2O$, trichloroacetic acid and pyridine in absolute EtOH. The crystal structure was determined. The complex crystallizes in monoclinic, space group $P2_1/c$, unit cell parameters, a = 14.951(1), b = 20.791(2), c = 17.882(1) Å, $\alpha = \gamma = 90^\circ$, $\beta = 102.67(1)^\circ$. Variable temperature solid state magnetic susceptibility study shows that the complex has an antiferromagnetic exchange interaction. CCDC: 183369.

Keywords: crystal structure manganese complex mixed valence magnetism

0 Introduction

The synthesis and magnetic property of oxo-centered trinuclear manganese complexes have (been a focus of intense research efforts for a long time due to their characteristics of intramolecular electron transfer and magnetic exchange^[1]. They also serve as an excellent starting material to make higher nuclear cluster as single molecule magnet^[2]. Up to date, there are the well-characterized trinuclear manganese complexes of the general formulation $[Mn_3O(O_2CR) {}_{6}L_3]^{0, +}$ with the bridging ligands, such as acetic $acid^{[3-5]}$, benzoic $acid^{[5,6]}$, pivalic $acid^{[7]}$, isobutyric $acid^{[8]}$, X-benzoato $acid^{[5,9]}$, butyric $acid^{[10]}$, and with the terminal ligands, such as pyridine^[3-6, 10], X-pyridine^[4], imidazole^[8], 3-methylpyridine^[11] or water^[5]. In all these complexes very subtle changes in the terminal and bridging ligands and even extra solvent in the crystals can give some strong effects on the exact nature of ground and

收稿日期:2002-04-02。收修改稿日期:2002-05-22。 国家自然科学基金资助项目(No. 90101028 和 29929001)。

^{*} 通讯联系人。E-mail: xyz@ netra. nju. edu. cn

第一作者:黄 辉,男,37岁,副教授;研究方向:功能配合物。

Yield,

第18卷

low-lying magnetic states^[1]. In this paper, we report the synthesis and crystal structure of Mn₃O(O₂CCCl₃) 6 $(py)_2(H_2O)$, together with the results of variable temperature magnetic susceptibility.

Experimental 1

Materials and Measurements 1.1

All manipulations were performed under aerobic conditions. Reagent grade solvents were used without further purification. The NⁿBu₄MnO₄ was prepared according to the literature report^[5]. NⁿBu₄Br (12.00g, 37. 2mmol) was added to an aqueous solution of KMnO₄(5.00g, 31.6mmol) with vigorous stirring. The immediate purple precipitate was collected by filtration, washed thoroughly with distilled water and diethyl ether and then dried in vacuo at room temperature. Yield > 90%.

Warning ! NⁿBu₄MnO₄ is potentially explosive and must be treated with care.

The elemental analysis of carbon, hydrogen and nitrogen were performed on a Perkin-Elmer 240C at the Analysis and Measurement Center of Nanjing University. IR spectra $(400 \sim 4000 \text{ cm}^{-1})$ were recorded from KBr pellets in a Bruker Vector 22 FTIR spectrophotometer. The variable temperature (75 ~ 300K) magnetic susceptibility measurements of microcrystalline samples were obtained on a Faraday-type magnetic balance at 0.7T magnetic fields. Diamagnetic corrections were estimated from Pascal's constants and substrated from the experimental susceptibility data to obtain the molar paramagnetic susceptibility of the complex.

1.2 Synthesis of $Mn_3O(O_2CCCl_3)_6(py)_2(H_2O)$

Mn(O₂CMe)₂ • 4H₂O(2.00g, 8.15mmol) and trichloroacetic acid (10.00g, 61.4mmol) were dissolved in a solvent mixture comprising absolute EtOH (30mL) and pyridine (3mL). The resulting solution was stirred while solid NⁿBu₄MnO₄(1.14g, 3.15mmol) was added in small portions to give a deep brown solution. This was allowed to stand undisturbed 4h, and then resulting brown-black precipitate which was collected by filtration, washed thoroughly with EtOH and dried in vacuo.

60%. (Based on Mn) . Anal. Calcd. for C₂₂H₁₂Cl₁₈Mn₃N₂O₁₄: C, 19.83; H, 0.90; N, 2.10. Found: C, 19.92; H, 1.02; N, 2.04%. IR Data (main bands, cm⁻¹): 689 (s), 745 (m), 837 (s), 1047(m), 1224(m), 1383(s), 1683(s), 1686(s), 3442(s). Crystals for X-ray crystallographic analysis were obtained by recrystallization from CH₂Cl₂ solution.

1.3 Crystallographic Study

The data were collected on a SMART APEX CCD diffractometer using graphite-monochromated Mo $K\alpha$ radiation (0.71073Å) at room temperature (293K). A crystal of dimensions $0.30 \times 0.20 \times 0.20$ mm was attached to a thin glass fibre and mounted on the diffractometer. Cell parameters and orientation matrix for data collection were obtained from least-squares refinement. 27704 intensity data, of which 9537 were unique, were collected in the range $1.90^\circ < \theta <$ 25.00°. The title complex crystallizes in monoclinic, space group $P2_1/c$, with a = 14.951(1), b = 20.971(2), c = 17.882(1) Å, V = 5423.2(7) Å³, Z = 4, $D(\text{calc.}) = 1.630(\text{g} \cdot \text{cm}^{-3}), F(000) = 2604.$ The structure was solved by the direct method. All non-hydrogen atoms were refined anisotropically by the full-matrix least-squares method. The hydrogen atoms were added geometrically and not refined. R_1 was 0.0493, w R_2 was 0.1542, $w = 1 / [\sigma^2 (F_0)^2 +$ $(0.0900 P)^{2} + 1.9900 P$] where $P = (F_{0}^{2} + 2F_{c}^{2}) /$ 3. The refinement was based on F^2 . Using SHELXTL created the molecular graph. The key crystallographic data and refinement for the complex are given in Table 1.

CCDC: 183369.

... . .

2 Results and Discussion

2.1 Description of the Crystal Structure

The molecular structure of the title complex is shown in Fig. 1. Fractional coordinates and isotropic thermal parameters are listed in Table 2. Selected bond lengths and bond angles are given in Table 3. The charge on the complex is an Mn² Mn¹ description. The complex has distorted octahedral metal geometries and 第8期

Table 1 Crystallographic and Refinement					
formula	С22Н12С118Мп3N2O14	formula weight	1331.26		
crystal system	monoclinic	space group	P21/c		
a∕Å	14.951(1)	b∕Å	20.791(2)		
c/Å	17.882(1)	$\alpha, \gamma/(\circ)$	90		
β/(°)	102.67(1)	V∕ų	5423.2(7)		
Z	4	$D(\text{cale.})/(g \cdot \text{cm}^{-3})$	1.630		
$\mu(M \circ K \alpha) / mm$	1. 624	F(000)	2604		
crystal size/mm	0. 30 × 0. 20 × 0. 20	temperature / K	293		
radiation / Å	0. 71073	θ range for data collection / (°)	1.90 to 25.00		
limiting indices	$-17 \leq h \leq 17, 0 \leq k \leq 24, 0 \leq l \leq 21$	No. of reflections measured	27704		
No. of independent reflections	9537	R(int)	0. 073		
observed data $[1 > 2.0 \sigma(1)]$	6917	final R indices	$R_1 = 0.0493$, w $R_2 = 0.1542$		
goodness of fit indicator	1. 02	largest diff. peak and hole/(e · Å - 3)	0. 69, -0. 59		

Table 2 Fractional Coordinates ($\times 10^4$) and Isotropic Thermal Parameters ($Å^2 \times 10^3$)

atom	x	y	z	U(eq)	atom	x	y	z	U(eq)
Mn1	991(3)	4961(3)	6399(1)	42(4)	Mn2	1329(3)	3799(8)	7795(5)	45(8)
Mn3	3125(6)	4435(9)	7297(8)	51(1)	Cl1	- 1010(8)	2586(1)	6098(6)	98(5)
C12	- 1750(4)	3666(1)	5197(9)	95(7)	C13	- 1772(6)	3609(2)	6809(9)	107(5)
C14	- 661(9)	6130(1)	8047(9)	154(4)	C15	- 1085(2)	5000(5)	8633(3)	194(5)
C16	522(2)	5504(7)	9249(9)	163(2)	C17	3654(4)	6542(7)	8220(3)	190(9)
C18	2282(9)	7085(1)	7004(8)	162(5)	C19	3831(3)	6587(4)	6702(4)	334(4)
C110	2796(3)	3475(2)	823(9)	207(7)	C111	3753(9)	4640(1)	4760(9)	141(8)
C112	1938(6)	4501(5)	3945(5)	141(8)	C113	2537(1)	4328(2)	10348(3)	230(2)
C114	4248(3)	3973(9)	10180(3)	161(9)	Cl15	3673(3)	5200(8)	9892(5)	240(2)
C116	2162(2)	2188(8)	6195(2)	187(8)	C117	2940(2)	1781(9)	7679(2)	189(7)
C118	4089(3)	2365(8)	6754(2)	77(8)	01	1867(9)	4361(1)	2237(1)	53(1)
02	141(2)	5594(9)	5582(1)	64(1)	03	- 83(1)	4223(7)	6016(1)	63(5)
04	287(2)	3511(6)	6903(4)	63(7)	05	264(3)	5269(7)	7246(2)	91(5)
06	491(3)	4494(9)	8083(2)	91(3)	07	1929(3)	5763(1)	6672(3)	96(3)
08	3101(3)	5382(6)	7450(2)	93(1)	09	1590(2)	4659(4)	5458(5)	72(8)
010	3012(2)	4512(7)	6118(2)	80(1)	011	2218(3)	4012(2)	8790(4)	96(6)
012	3478(2)	4374(2)	8524(2)	97(1)	013	2120(2)	3050(1)	7567(2)	80(5)
014	3283(2)	3486(2)	7188(2)	83(1)	N1	762(3)	3184(2)	8445(2)	72(8)
N2	4490(3)	4511(3)	7348(3)	89(7)	C1	-224(3)	3746(2)	6357(3)	58(7)
C2	- 1147(3)	3430(2)	6133(2)	59(3)	СЗ	209(5)	5019(3)	7830(3)	97(3)
C4	- 187(5)	5457(3)	8383(3)	112(3)	C5	2618(5)	5825(3)	7154(4)	101(2)
C6	3019(5)	6495(3)	7228(5)	135(4)	C7	2402(4)	4514(3)	5508(3)	80(2)
C8	2713(4)	4309(3)	4800(3)	90(2)	C9	2984(4)	4212(4)	8955(3)	101(3)
C10	3350(5)	4397(4)	9795(3)	113(3)	C11	2795(4)	3038(3)	7312(4)	80(8)
C12	3041(4)	2372(3)	7035(4)	89(2)	C13	572(4)	2566(2)	8192(3)	73(4)
C14	163(4)	2138(3)	8598(3)	75(5)	C15	33(4)	2323(2)	9273(3)	76(9)
C16	251(4)	2953(2)	9564(3)	76(2)	C17	560(4)	3345(3)	9103(3)	74(4)
C18	5001(3)	4911(3)	7837(3)	91(2)	C19	5868(3)	5070(3)	837(3)	93(2)
C20	6330(3)	4710(3)	7352(3)	94(2)	C21	5811(3)	4289(3)	6880(3)	92(2)
C22	4895(3)	4193(3)	6891(3)	90(2)					

U(eq) = 1/3 of the trace of the orthogonalized U tensor.

the overall "basic metal carboxylate" structure. The central O-atom O(1) lies in the plane of the Mn3 triangle. The O(1) -Mn distances are 1.848(3) Å for Mn(2), 1.862(3) Å for Mn(3) and 2.145(3) Å for Mn(1) (which has the H₂O molecule as terminal ligand). The Mn-O(1) -Mn angles are Mn(2) -O(1) -Mn $(3) = 124.68(15)^{\circ}; Mn(1) -O(1) -Mn(3) = 117.09$ $(13)^{\circ}$ and $Mn(1) -O(1) -Mn(2) = 118.22(13)^{\circ}$, respectively. The Mn coordination geometries are slightly distorted octahedra consisting of the oxygen of the

• 800 •			无_机化	学学报			第 18 卷
Table 3 Select Bond Lengths (Å) and Bond Angles(°)							
Mn1-O1	2.145(3)	Mn1-O2	2.161(3)	Mn1-O3	2.218(3)	Mn1-05	2.147(4)
Mn1-07	2.164(4)	Mn1-09	2.164(3)	Mn2-O1	1.848(3)	Mn2-O4	2.060(3)
Mn2-06	2.051(4)	Mn2-011	2.022(3)	Mn2-O13	2.051(3)	Mn2-N1	2.035(4)
Mn3-O1	1.862(3)	Mn3-08	1.988(4)	Mn3-O10	2.085(3)	Mn3-012	2.144(3)
Mn3-O14	2.003(4)	Mn3-N2	2.028(5)				
01-Mn1-02	177.93(11)	013-Mn2-N1	88.06(15)	O1-Mn1-O7	91.44(14)	01-Mn3-012	94.91(12)
O2-Mn1-O5	88.91(13)	08-Mn3-010	93.60(15)	03-Mn1-05	88.84(13)	08-Mn3-N2	88.1(2)
O5-Mn1-O7	90.81(17)	O10-Mn3-N2	84.08(17)	01-Mn2-04	95.89(12)	014-Mn3-N2	86.7(2)
01-Mn2-013	91.69(13)	Mn2-O1-Mn3	124.68(15)	04-Mn2-013	89.76(13)	06-Mn2-013	174.97(15)
O11-Mn2-N1	84.88(16)	01-Mn1-05	90.94(12)	01-Mn3-010	94.44(12)	O2-Mn1-O3	86.21(11)
01-Mn3-N2	178.45(18)	02-Mn1-09	86.19(12)	08-Mn3-014	174.37(16)	O3-Mn1-O9	87.39(12)
O10-Mn3-O14	87.80(15)	07-Mn1-09	92. 33(16)	012-Mn3-N2	86.57(17)	01-Mn2-011	93.85(14)
Mn1-O1-Mn3	117.09(13)	04-Mn2-06	89.94(14)	04-Mn2-N1	85.40(14)	06-Mn2-N1	86.91(16)
O1-Mn-O3	95.85(11)	01-Mn3-08	92.51(16)	01-Mn1-09	94.07(11)	01-Mn3-014	92.81(12)
02-Mn1-07	86.50(14)	08-Mn3-012	85.82(15)	03-Mn1-07	172.70(15)	010-Mn3-012	170.65(12)
05-Mn1-09	174.01(14)	012-Mn3-014	91.91(15)	01-Mn2-06	93. 34(14)	Mn1-O1-Mn2	118.22(13)
O1-Mn2-N1	178.69(15)	04-Mn2-011	169. 92(15)	06-Mn2-011	86.87(16)	011-Mn2-013	92.57(16)

Fig. 1 Molecular structure of the title complex

central triangle, four oxygen atoms from bridging trichloroacetic acid ligands, and a terminal oxygen (H₂O) or nitrogen (pyridine) atom. The average values for the five Mn-O bond distances are 2. 168Å for Mn (1), 2. 006 Å for Mn(2), and 2. 016Å for Mn(3), respectively. This asymmetry is most noticeable in the Mn₃ triangle being essentially isosceles rather than equilateral. The Mn(2) -Mn(3) distance (3. 287Å) is significantly shorter than the Mn(2, 3)-Mn(1) distance (3. 431Å and 3. 422Å). The Mn(1) atom can be assigned as Mn^{II} center since all Mn(1) distances are longer than those for Mn(2) and Mn(3), as expected for the lower oxidation state. The same situation has been reported for the benzoate^[5] and X-benzoate analog^[9].

2.2 Magnetic Susceptibility

Variable temperature (75 to 300K) magnetic susceptibility data were colleted for microcrystalline sample of the compound. The μ_{eff} versus *T* plots is shown in Fig. 2. The effective magnetic moment decreases gradually from 7.85(c.g. s. emu) at 300K to 5.53 (c.g. s. emu) at 75K. The similar results have been reported for other analogous trinuclear oxo-centered manganese complex^[5, 9-11], implying the existence of an antiferromagnetically coupling of the Mn₃ core of the title complex.

Fig. 2 Plots of effective magnetic moment per Mn₃O molecule and molar paramagnetic susceptibility vs temperature

References

- [1] McCusker J. K., Jang H. G., Wang S., Christou G., Hendrickson D. N. Inorg. Chem., 1992, 31, 1874.
- [2] Seberta S., Tsai H. L., Schake A. R., Wang S. Y., Vincent

第8期 黄 辉等: 混合价三核锰配合物 Mn₃O(O₂CCCl₃)₆(py)₂(H₂O)的合成、晶体结构及磁性

• 801 •

J. B., Folting K., Gatteschi D., Christou G., Hendrickon D. N. J. Am. Chem. Soc., **1993**, **115**, 1804.

- [3] Baikie A. R. E., Hursthouse M. B., New D. B., Thornton P. J. Chem. Soc. Chem. Commun., 1978, 62.
- [4] Baikie A. R. E., Hursthouse M. B., New D. B., Thornton P., White R. C. J. Chem. Soc. Chem. Commun., 1980, 684.
- [5] Vincent J. B., Chang H. R., Folting K., Huffman J. C., Christon G., Hendrickson D. N. J. Am. Chem. Soc., 1987, 109, 5703.
- [6] Xu H., Li J. Y., Liu Q., Xu Z., You X. Z., Yu K. B. Jiegou Huaxue (Chinese J. Struct. Chem.), 1994, 13, 272.
- [7] Wu R. W., Poyraz M., Sowrey F. E., Anson C. E., Wocadle

S., Powell A. K., Jayasooriya U. A., Cannon R. D., Nakamolo T., Katada M., Sano H. *Inorg. Chem.*, **1998**, **37**, 1913.

- [8] Zhang S. W., Wei Y. G., Liu Q., Shao M. C. Polyhedron, 1996, 15, 1041.
- [9] Joan R., Belen A., Helen S. E., George C. Inorg. Chem., 1997, 36, 2352.
- [10] Li J., Yang S. M., Zhang F. X., Tang Z. X., Ma S. L., Shi
 Q. I., Wu Q. J., Huang Z. X. Inorg. Chim. Acta, 1999, 294, 109.
- [11] An J., Chen Z. D., Bian J., Jin X. L., Wang S. X., Xu
 G. X. Inorg. Chim. Acta, 1999, 287, 82.