Vol. 18, No. 8 Aug., 2002

研究简报

$Cu[C_5H_3N(CCH_3 = N-C_6H_5)_2]_2(PF_6)_2$ 配合物的合成、 晶体结构和热分解反应动力学

蒋毅民*.1 谭黎峰2 银秀菊1 钟新仙1 张淑华1 (1广西师范大学化学化工系,桂林 541004) (2桂林医学院药学系,桂林 541004)

关键词:	铜配合物	Schiff 碱	晶体结构
分类号:	0614. 121		

铜是重要的生命元素,它与铁一样能起到输送 氧气和电子载体的作用。把铜的配合物作为生物体 内金属离子/酶/底物间相互作用的模拟研究一直 十分活跃^[1-4]。我们选取 Cu (II)与 2,6-双(1-苯基亚 氨基甲基) 吡啶和 KPF₆ 合成了配合物 Cu[C₅H₃N (CCH₃ = N-C₆H₅)₂]₂(PF₆)₂,获得单晶,测定了其晶体 结构,并讨论了体系中二面角的情况及热分解反应 动力学。

1 实验部分

1.1 配合物的合成

将溶有 2.5×10⁻³mol(0.78g) 2, 6-双(1-苯基 亚氨基甲基) 吡啶(按文献^[5]的方法合成)的甲苯 溶液在搅拌下加入到溶有 1.25×10⁻³mol(0.32g) CuSO4・5H₂O 的 20mL 甲醇溶液中,在搅拌下室温 反应 2h,再加入溶有 2.5×10⁻³mol(0.46g) KPF₆ 的 20mL 甲醇溶液,连续反应 1h 后,缓慢蒸发、结晶、过 滤得黄绿色固体,将固体溶于甲醇 - 乙腈的混合溶 剂,室温放置,18 天后得到黄绿色单晶。

1.2 晶体结构测定及结构解析

选取尺寸大小为 0.56×0.44×0.44mm³ 的晶 体安置于 Siemens P4 型衍射仪上,用石墨单色化的 Mo Kα 射线(λ=0.71073Å)在 1.59° ≤ θ ≤ 24.99° 范围内以 ω扫描方式收集数据,于 299(2)K 下共收 集到 9762 个强度数据,独立衍射点 8338 个 (*R*_{int} = 0.0184), 其中 $F_0 > 4\sigma(F_0)$ 的可观测点为4567个, 40个2.64° < θ < 15.10°反射定晶胞,全部数据经 经验吸收校正。所有计算均在 P II 350 微机上用 Siemens SHELXTL97 程序包来完成。对氢原子坐标 和各向异性温度因子进行了全矩阵最小二乘法精 修。差值 Fourier 图中残余最高电子密度峰 $\rho_{max} =$ 1.128e · Å⁻³,最低峰 $\rho_{min} = -0.685e \cdot Å^{-3}$, S = 0.920. (Δ / σ)max = 0.001。

2 结果与讨论

2.1 配合物的化学组成测定

配合物的碳, 氢, 氮用德国 Elementar Vario EL 元素分析仪测定, 金属离子用 EDTA 滴定, 实验值 为: C, 51. 43%; H, 3. 90%; N, 8. 78%; Cu, 6. 47%。 按分子式 C45H42.5CuF12N7.5P2, 其理论计算为: C, 51. 48%; H, 3. 88%; N, 8. 85%; Cu, 6. 46%。

2.2 晶体结构描述及讨论

晶体解析表明:标题化合物属三斜晶系,空间群 P1,晶胞参数为 a = 12.6470(10)Å, b = 14.123(2)Å, c = 15.613(2)Å; $\alpha = 66.150(10)^{\circ}$, $\beta = 79.470$ (10)°, $\gamma = 78.290(10)^{\circ}$, V = 2481.6(5)Å³, Z = 2, $D_c = 1.394$ Mg·m⁻³, $\mu = 0.589$ mm⁻¹, F(000) =1164,最终偏差因子 $R[I > 2\sigma(I)]$: $R_1 = 0.0668$, w $R_2 = 0.1927$; R(全部数据) R1 = 0.1133, w $R_2 =$ 0.2357, $W = 1/[\sigma^2(F_0^2) + (0.0137P)^2]$, $P = [F_0^2 +$

收稿日期:2002-03-01。收修改稿日期:2002-05-08。

^{*} 通讯联系人。E-mail: zsh720108@21cn. com

第一作者:蒋毅民,男,45岁,教授;研究方向:配位化学。

 $2F_{c}^{2}]/3_{o}$

配合物的非氢原子坐标和热参数列于表 1, 配 合物的主要键长和键角列于表 2, 晶体结构和晶胞 堆积图见图 1 和图 2。配合物由阴阳离子相结合而 得到,阳离子为: Cu[CsH₃N(CCH₃ = N-C₆H₅)₂]⁺, 阴 离子: PF₆⁻,两个阴离子在晶体中不相同,其中一个 阴离子的六个 F(F7~F12)在晶体中是无序的,两个 PF₆⁻都是正八面体结构。由图 1 可见,两个席夫碱配 体 CsH₃N(CCH₃ = N-C₆H₅)₂分别提供 3 个 N 原子与 Cu²⁺配位形成两个邻边五元环,中心 Cu(II)离子和 六配位原子形成变形八面体结构,其中 N1, N2, N3, N5 处于赤道位置, N4, N6 处于轴向位置。吡啶环上 的 N 与 Cu 的键长 [Cu-N2, 1.934(4) Å] 比 Schiff 碱 碳氮双键中 N 与 Cu (II)的键长 [Cu-N1, 2.114(4)Å; Cu-N3, 2.110(4)Å] 要短,这说明吡啶环上 N 的配位 能力比 Schiff 碱碳氮双键中 N 的配位能力强。夹角 \angle N1-C7-C9 为 113.7(4)°,比原来席夫碱未配位时 的 116.1(2)°要小 2.4°,这是由于配位后形成五员 环所至。N1-C6,N1-C7 的键长 [N1-C6,1.444(6)Å; N1-C7,1.274(6)Å]比席夫碱未配位时 [未配位时键 长分别为 1.423(2)Å和 1.265(2)Å^[5]]分别长了 0.021Å和 0.009Å,这是由于 N1 与 Cu 配位,破坏了 原有的共轭体系,使键长变长。未配位时席夫碱苯环 平面与吡啶环原来基本共面^[5],现以发生扭曲,平面 N1, N2, N3, C7, C9, C13, C14 与两个苯环的二面角 分别为 81.9°和 66.1°,这是由于配体体积较大,如

表 1 非氢原子坐标和热参数

Table 1 Nonnydrogen Fractional Atomic Coordinates (× 10) and Equivalent Isotropic Temperature Factors (A	' × 10	×	€.	;]	J	J	I	J.	1	J	۲
--	--------	---	----	-----	---	---	---	----	---	---	---

atom	x	у	z	Ueq	atom	x	у	z	Ueq
Cu	7746(1)	4293(1)	2670(1)	55(1)	F(1)	1632(3)	4107(4)	2320(3)	111(1)
F(2)	3642(4)	4035(4)	3318(3)	114(2)	F(4)	2165(5)	3275(5)	3767(3)	148(2)
F(6)	3067(6)	4891(5)	1884(3)	167(3)	N(2)	8728(3)	4060(3)	1646(3)	48(1)
N(4)	7888(4)	5490(3)	3182(3)	55(1)	N(6)	6718(4)	3067(3)	2696(3)	60(1)
C(2)	8489(7)	1762(7)	5962(5)	111(3)	C(4)	9376(6)	3191(7)	5695(5)	97(2)
C(6)	9039(5)	2860(5)	4393(4)	61(2)	C(8)	10603(5)	1935(5)	3215(4)	76(2)
C(10)	10160(5)	2970(5)	1160(4)	67(2)	C(12)	9007(5)	4239(5)	59(4)	68(2)
C(14)	7469(4)	5349(4)	694(3)	51(1)	C(16)	6120(5)	6203(4)	1515(3)	53(1)
C(18)	4284(5)	6645(6)	2048(4)	78(2)	C(20)	5362(7)	7989(5)	1146(6)	94(2)
C(22)	8023(7)	7363(5)	2421(5)	86(2)	C(24)	9763(10)	7900(9)	1622(5)	114(3)
C(26)	9595(6)	6095(6)	2395(4)	73(2)	C(28)	7409(4)	5345(4)	4014(3)	58(1)
C(30)	6754(4)	4481(4)	4428(3)	55(1)	C(32)	5643(6)	3352(6)	5645(4)	89(2)
C(34)	6098(4)	3204(5)	4153(4)	58(1)	C(36)	5436(6)	1856(5)	3730(5)	86(2)
C(38)	7620(6)	1911(5)	1898(5)	82(2)	C(40)	7140(8)	2163(8)	400(6)	112(3)
C(42)	6157(6)	3230(5)	1238(4)	81(2)	N(7)	5702(11)	9045(10)	3220(9)	198(5)
C(43)	5263(13)	9767(12)	2636(12)	179(6)	C(44)	4805(15)	10663(11)	1846(12)	287(11)
N(8)	8187(15)	- 1309(12)	4133(11)	143(6)	C(45)	7980(15)	-558(12)	4341(11)	132(7)
C(46)	7503(22)	104(17)	4873(19)	437(42)	P(1)	2369(1)	4057(2)	2824(1)	77(1)
P(2)	8117(2)	9681(2)	-993(2)	94(1)	F(3)	3244(4)	3186(5)	2477(4)	149(2)
F(5)	2029(5)	4956(4)	3150(4)	151(2)	F(7)	7655(9)	9502(17)	- 1686(8)	438(12)
F(8)	8344(6)	8550(4)	-316(4)	190(3)	F(9)	6959(5)	9784(4)	-498(5)	195(3)
F(10)	8075(6)	10866(4)	- 1520(5)	191(3)	F(11)	9190(6)	9570(4)	-1583(7)	264(5)
F(12)	8488(11)	9989(7)	- 225(7)	293(6)	FN(1)	9016(4)	3203(3)	3390(3)	54(1)
N(3)	7030(4)	5427(3)	1481(2)	48(1)	N(5)	6680(3)	4002(3)	3857(3)	50(1)
C(1)	8568(6)	2012(5)	4992(4)	81(2)	C(3)	8892(7)	2353(9)	6305(5)	118(3)
C(5)	9461(5)	3450(5)	4724(4)	70(2)	C(7)	9709(4)	2799(4)	2886(4)	53(1)
C(9)	9558(4)	3282(4)	1866(3)	52(1)	C(11)	9867(5)	3445(5)	255(4)	75(2)
C(13)	8432(4)	4547(4)	772(3)	54(1)	C(15)	7037(6)	5979(5)	-232(4)	84(2)
C(17)	5151(5)	5900(5)	2003(4)	60(1)	C(19)	4385(7)	7682(7)	1623(5)	93(2)
C(21)	6240(6)	7252(5)	1095(5)	76(2)	C(23)	8680(11)	8133(6)	1887(6)	116(3)
C(25)	10208(7)	6894(8)	1878(5)	95(2)	C(27)	8525(5)	6326(5)	2677(4)	65(2)
C(29)	7533(6)	5941(6)	4588(4)	90(2)	C(31)	6225(6)	4161(6)	5337(4)	82(2)
C(33)	5561(5)	2858(5)	5063(4)	76(2)	C(35)	6114(4)	2708(4)	3469(4)	58(1)
C(37)	6805(5)	2708(5)	1949(4)	63(2)	C(39)	7772(7)	1650(7)	1096(6)	104(3)
C(41)	6337(7)	2933(7)	464(5)	103(2)					

.

Useq is defined as one third of the orthogonalized U_0 tensor.

· · · · · · · · ·

· 804 ·

无机化学学报

第 18 卷

		:	表 2 主要領	建长和键角			
		Table 2 Selected	Bond Dista	nces(Å) and Bond	Angles(°)		
Cu-N(2)	1.934(4)	Cu-N(5)	2.028(4)	Cu-N(3)	2.110(4)	Cu-N(1)	2.114(4)
Cu-N(4)	2.190(4)	Cu-N(6)	2.351(4)	N1-C6	1.444(6)	N1-C7	1.274(6)
P(1)-F(4)	1.541(4)	P(1) - F(3)	1.548(5)	P(1)-F(6)	1.552(5)	P(1)-F(5)	1.565(5)
P(1)-F(2)	1.589(4)	P(1)-F(1)	1.591(4)	P(2)-F(7)	1.446(7)	P(2)-F(11)	1.513(6)
P(2)-F(8)	1.521(5)	P(2)-F(10)	1.531(5)	P(2)-F(9)	1.535(5)	P(2)-F(12)	1.555(8)
F(9)-P(2)-F(12)	87.3(6)	N(2)-Cu-N(5)	159.8(2)	N(2)-Cu-N(3)	78.2(2)	N(5)-Cu-N(3)	111.7(2)
N(1)-Cu-N(2)	78.1(2)	N(1)-Cu-N(5)	93.1(2)	N(3)-Cu-N(1)	155.2(2)	N(2)-Cu-N(4)	122.3(2)
N(5)-Cu-N(4)	76.1(2)	N(4)-Cu-N(3)	91.7(2)	N(1)-Cu-N(4)	94.7(2)	N(2)-Cu-N(6)	89.5(2)
N(5)-Cu-N(6)	73.4(2)	N(3)-Cu-N(6)	90.2(2)	N(1)-Cu-N(6)	96.9(2)	F(4)-P(1)-F(6)	176.8(4)
F(4)-P(1)-F(3)	93.5(4)	F(4)-P(1)-F(5)	87.8(3)	F(3)-P(1)-F(5)	178.7(3)	F(5)-P(1)-F(6)	89.3(4)
F(4) - P(1) - F(2)	89.5(3)	F(3)-P(1)-F(2)	92.9(3)	F(2)-P(1)-F(6)	91.4(3)	F(5)-P(1)-F(2)	87.5(3)
F(4) - P(1) - F(1)	91.4(3)	F(3)-P(1)-F(1)	88.0(3)	F(1)-P(1)-F(6)	87.7(3)	F(5)-P(1)-F(1)	91.5(3)
F(2)-P(1)-F(1)	178.7(3)	F(7)-P(2)-F(11)	85.1(6)	F(7) - P(2) - F(8)	98.1(9)	F(8)-P(2)-F(11)	91.0(3)
F(7)-P(2)-F(10)	96.4(9)	F(10)-P(2)-F(11)	87.1	F(8)-P(2)-F(10)	165.1(5)	F(7)-P(2)-F(9)	87.3(6)
F(9)-P(2)-F(11)	172.4(6)	F(8)-P(2)-F(9)	90.8(3)	F(10)-P(2)-F(9)	93.1(3)	F(7)-P(2)-F(12)	172.6(9)
F(11)-P(2)-F(12)	100.2(7)	F(8)-P(2)-F(12)	87.0(5)	F(10)-P(2)-F(12)	78.8(5)		

图 1 配合物的结构图 Fig. 1 Crystal Structure of the complex

果苯环不发生扭曲,可能会产生很高的位能而使体 系不稳定,另外,配位的六个原子分属两个平面[平 面 N1, C7, N2, C13, C14, N3 和平面 N4, C28, N5, C34, C35, N6]的夹角为 84°接近垂直,也可能使体系 能量降低,才得以形成稳定的配合物。N8、C45、C46 占有率为 0.5,由于无序,F7~F12的热参数较高, 残余常数也较高,为 1.228.

CCDC: 180872.

图 2 晶胞堆积图

Fig. 2 Packing drawing of the complex

2.3 配合物的热分解反应动力学

2.3.1 配合物的热稳定性

根据配合物的 TG-DTG 曲线可以看出,该配合 物有两个失重峰,对应的分解温度及失重率(%)分 别为(括号内为理论值)。第一个峰,230~341℃,失 重率为 32.2% (31.97%); 第二个峰, 520~ 707.1℃,失重率为 19.42% (21.29%)。由此推测可 能的热分解过程为:

· 805 ·

 $Cu[C_{5}H_{3}N(CCH_{3} = N-C_{6}H_{5})_{2}]_{2}(PF_{6})_{2} \xrightarrow{230 \sim 341^{\circ}C} Cu[C_{5}H_{3}N(CCH_{3} = N-C_{6}H_{5})_{2}](PF_{6})_{2}$ 520 ~ 707°C

 $\xrightarrow{C_5H_3N(CCH_3 = N-C_6H_5)_2, -PF_6} CuPF_6$

No	<i>a</i> ,	<i>T</i> ,/K	$(d a / d t), / s^{-1}$	No	а,	<i>T</i> , / K	$(da/dt)/s^{-1}$
1	0. 030	515	16. 7031	9	0. 178	565	36. 2459
2	0.055	521	22.2777	10	0. 198	571	34. 121
3	0.076	528	24.001	11	0.212	576	32.009
4	0. 098	534	26. 9751	12	0.230	582	25.9457
5	0.120	540	30. 7214	13	0.246	587	21.9342
6	0.126	545	31.726	14	0.256	594	22.6931
7	0.152	552	32.996	15	0. 296	599	17.8693
8	0.169	558	35. 6175	16	0. 298	605	9.562

表 3		配合物式	为力学	≤的	基础数据	(峰1)
Table	3	Basic	Data	of	Complex	Kinetics

2.3.2 配合物的热分解反应机理

根据配合物的 TG、DTG 曲线, 对其第一步分解 反应分别进行非等温动力学处理,求得基础数据(见 表 3)。其中 i 为 TG、DTG 曲线上任意一点, T. 为 i点的温度, $a_i \in T_i$ 时的变化率(失重率), $(da/dt)_i$ $= \beta \cdot (dw/dt); (W_0 - W_\infty), W_0$ 为起始重量, W_w为 最终重量, β 为升温速率, (dw/dt), 为 DTG 曲线上 的峰高,选择文献^[6]上的积分形式的动力学机理函 数和机理函数(No.7 除外),用 Achar 法^[7]和 Coasts-Redfern 法^[8]求得 19 种机理的动力学参数 E、A 值 及相关系数 R。通过对 19 种不同机理^[9]时的动力学 参数,推断热分解的反应机理。再根据固体配合物 热分解的 E/(kJ・mol⁻¹) 值一般在 80~250, In(A/ s⁻¹)在16.91~69.09范围内的规律^[10],求得标题配 合物的热分解反应机理、机理函数、活化能(E/kJ) 分别为化学反应(二级), $f(a) = (1 - a)^2$, 144.64; 配合物的非动力学方程为 $da = dt = A_e^{-E/RT} \cdot (1 - C)$ a)²。求得的动力学补偿效应关系式为: In A = 0. $3497 E + 0.6772_{\circ}$

老 文 龂

- [1] Sigel H. Pure Appl. Chem., 1989, 61, 923.
- [2] Sigel H. Inrog. Chem. Acta, 192, 1, 198.
- [3] Otenberg J. B., Fischer B. E., ET AL. J. Inorg. Nucl. Chem., 1980, 42, 785.
- [4] Maurizot J. C., Boubault G. ET AL. Biochemistry, 1978, 17.2096.
- [5] JIANG Yi-Min(蒋毅民), TAN Li-Feng(谭黎峰), BI Xian-Shu(闭献树) Guangxi Shifan Daxue Xuebao(广西师范大 学学报)(自然科学版), 2000,3,68.
- [6] Liu H. G., Zhang J. H. et al Thermochemica Acta, 1992, 9, 197.
- [7] Narahari Achar B. N., Bridley G. W. et al Proc. Int. Caly Conf., 1 st, 1996, 67.
- [8] Coasts A. W., Redfern I. P. Nature (London), 1964, 68, 201.
- [9] LI Yu-Zeng(李余增) Thermal Analysis(热分析), Beijing: Tsinghua University Press, 1987, p44.
- [10]LI Shu-Lan(李淑兰), MENG Fan-Qin(孟凡芹) et al Huaxue Xuebao (Acta Chimica Sinica), 1998, 56, 478.

Synthesis and Crystal Structure of Complex $Cu[C_5H_3N(CCH_3 = N-C_6H_5)_2]_2(PF_6)_2$ and its Kinetics of Thermal Decomposition

JIANG Yi-Min^{*,1} TAN Li-Feng² YIN Xiu-Ju¹ ZHONG Xing-Xian¹ ZHANG Shu-Hua¹ (¹Department of Chemistry, Guangxi Normal University, Guilin 541004) (²Department of Pharmacy, Guilin Medicine Institute, Guilin 541004)

The title complex $Cu[C_5H_3N(CCH_3 = N-C_6H_5)_2]_2(PF_6)_2$ has been synthesized by reaction of Schiff base $C_5H_3N(CCH_3 = N-C_6H_5)_2$ and cupric sulfate in toluene solution. The crystal structure was determined by X-ray diffraction method and the chemical formula weight of the complex is 1041. 85. The crystal structure belongs to triclinic system with space group $P\overline{1}$ and cell parameters: a = 12.6470(10) Å, b = 14.123(2) Å, c = 15.613(2) Å; $\alpha = 66.150(10)^\circ$, $\beta = 79.470(10)^\circ$, $\gamma = 78.290(10)^\circ$, V = 2481.6(5) Å³, Z = 2, $D_c = 1.394Mg \cdot m^{-3}$ and F(000) = 1064. The final $R[I > 2\sigma(I)]$: $R_1 = 0.0668$, $wR_2 = 0.1927$; R(all data): $R_1 = 0.1133$, $wR_2 = 0.2357$. The Cu (II) was coordinated by six nitrogen, at the same time the Cu (II) formed a distorted octahedron, besides the angles and planes of this compound were discussed. The result of kinetics of the thermal decomposition indicated that the first step of it is 2 series chemical reactions, the function of machanism is $f(a) = (1 - a)^2$, and the activation energy is 144.64 E/kJ. CCDC: 180872.

Keywords:

Schiff base copper complex

crystal structure

kinetics of thermal decomposition