第8期 2002年8月 Vol. 18, No. 8 Aug.,2002

研究简报

二苄基锡双(四氢吡咯荒酸酯)的合成、表征和晶体结构

尹汉东* 王传华 马春林 朱德忠 (聊城师范学院化学系, 聊城 252059)

关键词: 二苄基锡双(四氢吡咯荒酸酯) 合成 晶体结构 分类号: 0614.12

二烃基锡类化合物因其具有较强的抗癌活性而 倍受关注^[1-5]。最近我们合成了一系列二丁基锡的 氨荒酸衍生物^[6-8],研究发现这些化合物具有较强 的抗癌活性,为进一步探索该类化合物的构效关系, 我们以二苄基氯化锡和四氢吡咯荒酸钠为原料,合 成了有机锡化合物二苄基锡双(四氢吡咯荒酸酯)。 利用元素分析、紫外光谱、红外光谱、核磁共振氢谱 和质谱对该化合物进行了表征。并利用 X-射线单晶 衍射测定了该化合物的晶体结构,结果表明分子中 锡原子为五配位三角双锥构型,并且在化合物中,由 于分子间 S…S 的相互作用,形成了一维无限链状结 构,此结构类型在该类化合物中尚未见报道。

1 实验部分

1.1 仪器和试剂

X4 型显微熔点仪(温度计未经校正), Carlo-Ebra 1106 型元素分析仪(锡含量采用重量分析法测 定), Nicolet-460 型红外光谱仪(KBr 压片), Jeol-FX-90Q 型核磁共振仪(TMS 为内标, CDCl₃ 为溶剂), UV-365 型紫外分光光度计(CH₂Cl₂ 为溶剂), HP-5988A 质谱仪(EI 源), Bruker Smart-1000 CCD X-射线衍射仪。

四氢吡咯荒酸钠按文献^[9]合成。其他试剂均为 分析纯, 溶剂 CH₂Cl₂ 经干燥处理后使用。

1.2 **化合物的合成**

在 Schlenk 管中加入 2. 2mmol 四氢吡咯荒酸 钠, 1. 0mmol 二苄基二氯化锡和 30mL CH₂Cl₂, 30℃

下搅拌 10h, 过滤, 滤液减压浓缩至 3~5mL, 加入适 量乙醚或石油醚, 低温静置, 析出白色固体, 粗产品 经二氯甲烷 - 乙醚重结晶得无色晶体。所得产物的 产率、熔点、元素分析、IR、UV、H NMR 和 MS 数据 如下: 无色晶体, 522mg, 产率: 88%。m.p. 134~ 136℃, C₂₄H₃₀N₂S₄Sn(计算值: C, 48. 57; H, 5. 10; N, 4. 72; Sn, 20. 00。实测值: C, 48. 23; H, 4. 94; N, 4. 70; Sn, 20. 31) $_{\circ}$ λ_{max} : 221, 265, 280nm $_{\circ}$ ν_{max} : 3024(w, Ph-H), 2966, 2855(m, C-H), 1480(s, C-N), 1125, 994 $(s, CS_2), 563(s, Sn-C), 445(s, Sn-S) \text{ cm}^{-1} \text{ }^{-1}\text{H NMR}$ $(CDCl_3, 90MHz)_{\circ} \delta: 1.75(8H, t, J = 8.0Hz, CH_2),$ 3. 80(8H, t, J = 8.0Hz, NCH₂), 2. 90(4H, t, J_{Sn-H} = 84.92Hz, PhCH₂Sn), 7.05 ~ 7.24(10H, m, Ph-H) $_{\circ}$ m/z: 503([M-Bz]⁺, 20), 448([M-S₂CN(CH₂ $(H_2)_2$ ⁺, 10), 412([M-2Bz]⁺, 58), 266([SnS₂CN $(CH_2CH_2)_2]^+$, 27), 114($[SCN(CH_2CH_2)_2]^+$, 13), 91 $(PhCH_{2}^{+}, 100)_{\circ}$

1.3 化合物的晶体测定

取 0. 30mm × 0. 20mm × 0. 20mm 无色晶体置于 Bruker Smart-1000 CCD 型衍射仪上,用石墨单色化 的 Mo Ka 辐射为光源,在 1. 88° $\leq \theta \leq$ 25. 03°范围 内,以 $\omega/2\theta$ 扫描方式,在室温(301 ± 2K)下收集 12688 个衍射点。其中 2279 个为独立衍射点(R_{int} = 0. 0560)。晶体结构由直接法解出,所有的计算均使 用 SHELXTL-97 程序,非氢原子的坐标是在以后的 数轮差值 Fourier 合成中陆续确定的,对全部非氢原 子的坐标及各向异性温度因子参数进行全矩阵最小

收稿日期:2002-03-02。收修改稿日期:2002-04-08。

教育部骨干教师基金和山东省自然科学基金资助项目(No. Y2000B08)。

^{*} 通讯联系人。E-mail: yinhandong@ 263. net

第一作者:尹汉东,男,45岁,教授;研究方向:金属有机化学。

• 820 •

二乘法修正。偏差因子 $R_1 = 0.0341$, w $R_2 = 0.0627$ 。 正交晶系,空间群 Pccn, a = 2.1665(6) nm, b = 0.9932(3) nm, c = 1.1979(3) nm, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, Z = 2, V = 2.5777(12) nm³, $D_c = 1.529$ g· cm⁻³, μ (Mo $K\alpha$) = 1.330 mm⁻¹, F(000) = 1208,差值 电子密度最高和最低峰为 684 和 - 411e·nm⁻³。

CCDC: 179919°

2 结果与讨论

2.1 红外光谱

化合物碳硫键的不对称伸缩振动 (ν_{es}^{a}) 和对称 伸缩振动 (ν_{es}^{a}) 吸收分别出现在 1125cm⁻¹ 和 994 cm⁻¹, 其 $\Delta \nu (\nu_{es}^{a} - \nu_{es}^{a})$ 值为 131cm⁻¹, 与化合物 R₂NCS₂R^[10]相比明显减小,说明化合物中碳硫双键 和碳硫单键发生了一定程度的平均化,即碳硫双键 也与锡原子发生了配位作用,由此可以推断,化合物 中四氢吡咯荒酸基应是以双齿形式与锡原子配位。 但与相应原料四氢吡咯荒酸盐相比^[11],其 $\Delta \nu$ 值明 显增大,这说明化合物中四氢吡咯荒酸基是以非均 性的双齿形式与锡原子配位^[12],生成了六配位的有 机锡化合物。

2.2 核磁共振氢谱

'H NMR 的化学位移表明, 化合物芳环上的质 子在 7.05~7.24 间呈现多重峰; 四氢吡咯荒酸基中 与氦原子相连的亚甲基上的质子在 3.80 处有吸收; 与锡原子相连的苄基的亚甲基氢 δH 为 2.90, 分别 是由一个正常的单峰和一对小卫星峰组成, 这是由 于¹¹⁹Sn-H 偶合的结果, 其偶合常数为 84.92Hz。

2.3 质 谱

从化合物质谱数据分析看出,该化合物未出现 分子离子峰,最大丰度离子峰为 [M-2Bz]⁺,基峰为 苄基正离子(m/z=91),同时, [M-Bz]⁺也具有较高 丰度,说明化合物中 Sn-C 键较易断裂,去烃基化是 质谱裂解的主要机制。此外, [M-S₂CNC₄H₈]⁺、 [SCNC₄H₈])⁺以及([SnS₂CN(CH₂CH₂)₂]⁺碎片离子 均具有较高丰度,说明化合物中 Sn-S 键也相对较 弱。该化合物未检出质量大于 M⁺和多于一个锡原 子的碎片离子,表明在气体状态化合物是是以单体 形式存在。

2.4 晶体结构

化合物的非氢原子坐标和温度参数见表 1, 有 关键长和键角列于表 2。

表 1 化合物的非氢原子坐标参数和各向同性热参数

Table 1 Round and Containing Containing Containing Source Louis Containing Co	Table 1	Nonhydrogen	Fractional Ate	omic Coordinates	; (×10 ⁴);	and Equivalent	Isotropic	Temperature	Factors(× 10 ⁵ nm
--	---------	-------------	----------------	------------------	------------------------	----------------	-----------	-------------	----------	----------------------

_		and the second se								
	atom	x	y	z	Ueq	atom	x	y	z	Ueq
-	Sn(1)	2500	2500	2327(1)	47(1)	N(1)	3256(2)	-1397(4)	3402(3)	48(1)
	S(1)	2706(1)	885(1)	3907(1)	55(1)	S(2)	2798(1)	- 220(1)	1606(1)	57(1)
	C(1)	2951(2)	- 359(4)	2991(3)	44(1)	C(2)	3445(3)	- 1535(6)	4578(4)	66(2)
	C(3)	3912(3)	-2647(7)	4544(5)	82(2)	C(4)	3743(4)	- 3476(8)	3572(6)	92(2)
	C(5)	3505(3)	-2495(6)	2732(4)	60(1)	C(6)	3421(2)	3009(6)	1747(5)	60(1)
	C(7)	3925(2)	2241(5)	2299(4)	56(1)	C(8)	4216(3)	1194(6)	1768(6)	76(2)
	C(9)	4670(3)	448(7)	2323(8)	98(2)	C(10)	4837(3)	781(9)	3371(8)	105(3)
	C(11)	4558(3)	1824(9)	3914(7)	95(2)	C(12)	4108(2)	2538(7)	3373(5)	70(1)

表 2 化合物的重要键长和键角

Table 2 Selected Bond Distances(nm) and Angles(°)

				8	
Sn(1)-S(1A)	0.25209(12)	S(1)-C(6A)	0.2173(5)	Sn(1)-S(2)	0.29083(13)
Sn(1)-S(1)	0.25209(12)	S(1)-C(6)	0.2173(5)	Sn(1)-S(2A)	0.29083(13)
S(1)S(2A)	0. 2973	S(1)S(1A)	0.3330	S(2)-C(1)	0.1697(4)
S(1A)-Sn(1)-S(1)	82.67(6)	S(1A)-Sn(1)-S(2A)	65.97(4)	S(1)-Sn(1)-S(2)	65.97(4)
S(1A)-Sn(1)-S(2)	148.57(4)	S(1)-Sn(1)-S(2A)	148.57(4)	S(2)-Sn(1)-S(2A)	145.45(5)
S(1)-C(1)-S(2)	120.0(3)	N(1)-C(1)-S(2)	121.7(3)	N(1)-C(1)-S(1)	118.3(3)
C(1)-S(1)-Sn(1)	91.85(14)	C(1)-S(2)-Sn(1)	80.15(15)	C(7)-C(6)-Sn(1)	114.4(3)
C(1)-N(1)-C(5)	124.4(4)	S(1)-Sn(1)-C(6)	103.05(15)	S(2)-Sn(1)-C(6)	85.26(18)
S(1A)-Sn(1)-C(6A)	103.05(5)	S(2A)-Sn(1)-C(6)	83.85(16)	S(2A)-Sn(1)-C(6A)	85.26(18)
S(1A)-Sn(1)-C(6)	104.72(19)	S(2)-Sn(1)-C(6A)	83.85(16)	C(6A)-Sn(1)-C(6)	142.7(3)
S(1)-Sn(1)-C(6A)	104.75(18)				

化合物的分子结构如图 1 所示。该化合物中锡 原子为畸变的八面体构型。在锡原子的配位圈内, Sn(1) 与S(1), S(2), S(1A), S(2A) 之间的距离 分别为: Sn(1)-S(1), 0. 25209(12) nm, Sn(1)-S(2), 0.29083(13) nm, Sn(1) -S(1A), 0.25209(12) nm, Sn(1) -S(4), 0.29083(13) nm, 与化合物 'Bu₂Sn (S₂CNEt₂)₂^[13]的 Sn-S 键长基本一致。并且其值均远 小于这两种原子的范德华半径之和 (0.4nm), 说明 在化合物中吡咯烷荒酸配体是以非均性的双齿形式 与锡原子键合、生成六配位的有机锡化合物。与二 苄基锡双吗啉荒酸酯[14]不同的是在该化合物中,与 中心锡原子相连的两个苄基和两个吡咯烷荒酸配体 是完全相同的,但由于每个吡咯烷荒酸配体与锡原 子配位形成的两个非均性 Sn-S 键的长键(短键)均 处于分子的同侧,因而,该化合物并非是中心对称 的。锡原子周围的配位环境是: S(1), S(2), S(1A), S (2A) 处于赤道位置, 而 C(6) 和 C(6A) 处于轴向位 置、形成了八面体结构。处于轴向位置的苄基亚甲 基碳 C(6) 与处于赤道位置的 S(1), S(2), S(1A), S (2A)的键角数据分别为S(1)-Sn(1)-C(6),103.05 $(15)^{\circ}$; S(2) -Sn(1) -C(6), 85, 26(18)^{\circ}; S(1A) -Sn(1) -C(6), 104.72(18)°; S(2A) -Sn(1) -C(6), 83.85 (16)°。所有角与90°均有较大偏离。处于轴向位置的

图 1 化合物的分子结构图

Fig. 1 Molecular structure of compound

图 2 化合物的一维 S…S 近距作用透视图

Fig. 2 Perspective view showing the one-dimensional S…S interactions network of compound

另一个苄基亚甲基碳 C(6A) 与处于赤道位置的 S (1), S(2), S(1A), S(2A) 的键角数据与上述情况类 (U, 其数据分别为 104.72(18)°; 83.85(16)°; 104.72 (19)°; 85.26(18)°。三对处于对角位置原子的键角 数据为: S(1) -Sn(1) -S(2A), 148.57(4)°; S(1A) -Sn (1) -S(2), 148.57(4)°; C(6A) -Sn(1) -C(6), 142.7 (3)°。这些数据与 180°均有较大偏离, 由此可见, 该 化合物为畸变程度较大的八面体结构。

此外,分子之间吡咯烷荒酸配体的硫原子与硫 原子之间存在较强的 S…S 相互作用,通过这种超 van dar Waals 力的近距作用,形成了一维无限链状 结构,该结果不同与以前的文献报道^[14,15]。

参考文献

- Brown N. M. Tin-Based Antitumour Drugs, Springer-Verlag: Berlin, 1990, p69.
- [2] Gielen M., Boualam M., Mahieu B. et al Appl. Organomet. Chem., 1994, 8, 19.
- [3] YIN Han-Dong(尹汉东), ZHANG Ru-Fen(张如芬), MA Cun-Lin(马春林) Yingyong Huaxue(Chin. Appl. Chem.), 1998, 15(6), 53.
- [4] YIN Han-Dong(尹汉东)、ZHANG Ru-Fen(张如芬)、MA Cun-Lin(马春林) Youji Huaxue(Chin. J. Org. Chem.), 2000, 20, 108.
- [5] XIE Qing-Lan (谢庆兰), YANG Ying-Huai (杨应怀), ZHANG Zi-Qiang(张自强) Hecheng Huaxue (Chin. J. Syn. Chem.), 1996, 4, 233.
- [6] YIN Han-Dong(尹汉东)、ZHANG Ru-Fen(张如芬)、MA Cun-Lin(马春林) Youji Huaxue(Chin. J. Org. Chem.)、 1999, 19, 413.
- [7] YIN Han-Dong(尹汉东), WANG Chuan-Hua(王传华), ZHANG Ru-Fen(张如芬) et al Wuji Huaxue Xuebao(Chin. J. Inorg. Chem.), 2000, 16, 619.
- [8] YIN Han-Dong(尹汉东), MA Cun-Lin(马春林) Yingyong Huaxue(Chin. Appl. Chem.), 2000, 17, 375.
- [9] Nair G. G. R., Rao V. R. S., Murthy A. R. V. Mikrochim. Acta, 1961, 741.
- [10] Bonozi F. J. Organomet. Hem., 1967, 9, 395.
- [11]YIN Han-Dong(尹汉东), ZHANG Ru-Fen(张如芬), MA Cun-Lin(马春林) Liaocheng Shiyuan Xuebao(J. Liaocheng Teachers University, Natural Science), 1999, 12, 38.
- [12]YIN Han-Dong(尹汉东), Waug Yong(王 勇), ZHANG Ru-Fen(张如芬) et al Gaodeng Xuexiao Huaxue Xuebao (Chem. J. Chin. Univ.), 2000, 21, 1231.

第18卷

[13]Dakternieks D., Zhu H., Masi D. et al Inorg. Chem., 1992, 31, 3601. Inorg. Chem.), 2002, 18, 347. [15] Yin H. D., Ma C. L., Zhang R. F. Models Chem., 1999, 136, 7.

[14]YIN Han-Dong(尹汉东), WANG Chuan-Hua(王传华),MA Cun-Lin(马春林) et al Wuji Huaxue Xuebao(Chin. J.

Synthesis, Characterization and Crystal Structure of Dibenzyltin Bis(dithiotetrahydropyrrolocarbamate)

YIN Han-Dong* WANG Chuan-Hua MA Chun-Lin ZHU De-Zhong

(Department of Chemistry, Liaocheng Teachers University, Liaocheng 252059)

Dibenzyltin bis(dithiotetrahydropyrrolocarbamate) was synthesized by the reaction of dibenzyltin dichloride with dithiotetrahydropyrrolocarbamate. The compound was characterized by elemental analysis, IR, ¹H NMR and MS. and the crystal structure was determined by X-ray single crystal diffraction. The crystal belongs to orthorhombic with space group *Pccn*, a = 2.1665(6) nm, b = 0.9932(3) nm, c = 1.1979(3) nm, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, Z = 2, V = 2.5777(12) nm³, $D_c = 1.529$ g · cm⁻³, μ (Mo K α) = 1.330mm⁻¹, F(000) = 1208, $R_1 = 0.0341$, w $R_2 = 0.0627$. In the crystals, the structures consist of discrete molecules in which the tin atom is six-coordinate in a distorted octahedron configuration. CCDC: 179919.

Keywords: dibenzyltin dithiotetrahydropyrrolocarbamate synthesis crystal structure