Vol. 18, No. 9 Sep.,2002

, 研究简报

新型双核席夫碱配合物的合成及谱学性质

张玉玲 阮文娟 胡国航 朱志昂* (南开大学化学系,天津 300071)

关键词:	席夫碱	双核配合物	合成和性质
分类号:	0614.33		

席夫碱类大环配合物的研究涉及化学、物理、生 命科学和材料科学等诸多领域⁽¹⁾。它的多核配合物 在分子识别、主客体化学等方面研究是超分子化学 领域的一个重要组成部分⁽²⁾。由于席夫碱以氮原子 和氧原子配位与生物环境接近,在配位结构上与卟 啉类似,且容易制备,在模型配合物研究方面,以水 杨醛及其衍生物的配合物研究较多^(3,4),具有催化烯 烃环氧化功能的对称或非对称的四齿席夫碱配合物 的研究,已经取得了相当的进展^(5,6)。总之,过渡金属 的席夫碱配合物由于其生物功能,而愈来愈引起人 们的广泛的兴趣。以往文献报道的类似的配合物主 要是单核或高聚物结构^[7-9],本文利用金属模板法 合成的目标配合物尚未见报道(结构如 Scheme 1 所 示)。此类化合物可能在某些有机和生物反应具有良 好的催化功能,以及作为某些生物体系的模型分子 等方面具有潜在的应用前景。

1 实验部分

1.1 试剂与仪器

邻苯二胺, 哌啶, 原甲酸三乙酯, 乙醇, 甲醇, 四氢呋喃, 为分析纯试剂, Cu(ClO₄)₂ · 6H₂O, Zn(ClO₄)₂
· 2H₂O, Ni(ClO₄)₂ · 6H₂O 为自制试剂, Cu(OAc)₂ ·

Scheme 1

收稿日期:2002-02-21。收修改稿日期:2002-04-05。

国家自然科学基金资助项目(No. 20171024)教育部留学回国人员科研基金资助项目。

^{*}通讯联系人。E-mail: zazhu@ nankai. edu. cn

第一作者:张玉玲,女,29岁,博士研究生;研究方向:手性分子识别与不对称催化。

2H₂O, Zn(OAc)₂·H₂O, Ni(OAc)₂·4H₂O 为化学纯 试剂, 5, 5-亚甲基 - 二水杨醛按文献^[10]合成。

元素分析采用 PE-240 元素分析仪, 测定 C, H, N 的含量。红外光谱为 Bio-Rad 135 FT-IR 光谱仪 (4000~400 cm⁻¹), KBr 压片法。Mercury Vx300 核磁 共振仪(300 MHz), 以 TMS 为内标, DMSO 为溶剂。 UV-vis 采用 Beckman DU-8B 型紫外可见分光光度 计(700~190 nm) CHCl₃ 为溶剂。EPR 采用 Beuker EMX 100 顺磁共振仪, X 波段, 调制频率 100.0kHz, 微波功率 1.003mW, 时间常数 2.560 ms, 扫长范围 0~5000×10⁻⁴T, 室温下固体粉末测定。Raman 采用 Bruker RTS100/S 型 FT-Raman 光谱仪(3500~100 nm)。

1.2 配合物的合成^[9,11,12]

1a: 向 5, 5'- 亚甲基 - 二水杨醛 (0.5mmol), M(ClO₄)₂·6H₂O(0.5mmol), M(OAc)₂·2H₂O(0.5 mmol)中加入 20mL 甲醇, 混合物加热、回流, 然后滴 加 A^[13](1mmol)溶于 10mL 四氢呋喃的溶液, 控制在 一小时内滴完,反应混合物回流 5~10h,有黄色或 褐色固体生成, 冷却, 过滤, 用热甲醇洗 3 次, 真空干 燥。得到 1a。其他配合物合成方法与 1a 类似。

2 结果与讨论

2.1 配合物的组成及物理性质

由表1中数据可以看出,元素分析测定值与计 算结果基本吻合。

2.2 红外光谱

红外光谱采用 KBr 压片,在 4000~400cm⁻¹范 围内摄谱,其数据见表 2,由表中的数据可以看出, 在 3252~3440 区域内没有吸收峰存在,说明单元化 合物 A 上的伯胺与羰基氧缩合失水,形成席夫碱结 构, 所以不存在 ν_{N-H} 伸缩振动峰, 同时从配合物谱 图上 1700cm⁻¹ 附近未观测到酮基(C=O)的振动 峰, 而在 1650~1590cm⁻¹范围内有很强的C=N 伸 缩振动峰产生; 在 2920cm⁻¹和 2850cm⁻¹ 附近分别 出现 CH₂ 对称伸缩振动和反对称伸缩振动吸收峰, 说明配合物结构中有亚甲基存在, 由此可以说明二 醛与半体单元 A 发生作用; 在 1350~1410 区域内, 有 C-N 振动吸收峰,在 580~530cm⁻¹范围内还观测 到了 M-N 的振动吸收峰,460cm⁻¹ 附近的吸收峰,可 以归属为 M-O 的伸缩振动峰^[13,14]; 配合物的苯环的 骨架振动分别在 1580 和 1520cm⁻¹ 附近。另外配合 物结构的形成也可以从 'H NMR 和 Raman 光谱数据 得到证明。

2.3 Raman 光谱

红外光谱和拉曼光谱同属分子光谱,分子振动时,如果分子偶极距改变,则产生红外吸收光谱,如 果分子极化率变化,则产生拉曼光谱。二者是互为补 充的。在红外光谱的基础上讨论配合物的 Raman 光 谱的特点。

在 Raman 光谱中,在 3100~3000cm⁻¹ 范围内 有一强的苯环的 C-H 振动峰(与红外振动峰相比), 在 2930~2850 区域内 2913cm⁻¹ 处观测到弱的振动 峰。在 680~640cm⁻¹ 区域内有 C-X 的振动峰出现, 红外光谱中没有出现 C-X 的振动峰,这可用振动光 谱的互不相容原理来解释。文中合成的配合物席夫 碱单元具有不对称的结构。根据原理:不具有对称中 心的分子在 Raman 光谱中跃迁是允许的,而在红外 光谱中是禁阻的。由于化合物苯环比较多,所以 在 1600~1400cm⁻¹ 各种振动峰比较复杂,相应的 Raman 光谱振动峰^[15,16]归属在表 3 中。

2.4 ¹H NMR

表 1 配合物的产率、颜色、元素分析数据

				-	-	
				elemental analysis/%		
	formula	yield/%	color	C	N	Н
1a	Cs3H34O4N4Cl2Cu2Cl4 · H2O	71.1	yellow brown	55. 79(55. 72)	4.81(4.91)	3.94(3.50)
1b	C53H34O4N4Cl2Ni2 · H2O	73.8	red brown	63.95(63.83)	5.67(5.62)	3.66(3.48)
1c	C53H34O4N4Cl2Zn2	37.4	yellow	65.67(64.18)	6.18(5.65)	3.80(3.43)
2a	C55H40O4N4Cu2 · ClO4	70. 5	brown	57.92(57.61)	5.69(4.88)	4. 18(3. 49)
2b	C55H40O4N4Ni2 · H2O	63.4	red brown	62.57(62.57)	6.08(5.23)	4.58(3.98)
2c	C35H40O4N4Zn2	56.8	orange	68.88(69.47)	5.21(5.89)	3.85(4.21)
3a	C55H40O4N4Br2Cu2 · ClO4	82. 6	brown	53.50(53.25)	4.62(4.69)	3.48(3.01)
3b	C55H40O4N4Br2Ni2 · 2H2O	69. 9	red brown	57.23(57.65)	3.44(3.44)	5.45(5.08)

Table 1 Data of Yield, Color and Elemental Analysis of Complexes

* Calculated values in parentheses

第18卷

表 2 配合物的红外特征吸收峰								
		Table 2	Infrared S	pectra of the	Metal Com	plexes		(cm - 1)
	<u>1a</u>	1c	1b	2a	2b	2c	3a	3b
ph, vc.n	3054(w)	3056(w)	3056(w)	3059(w)	3057(w)	3059(w)	3057(w)	3056(w)
	3006(w)	3010(w)	3010(w)	3020(w)	2018(w)	3008(w)	3010(w)	3019(w)
$CH_2 \nu_{C-R}$	2916(w)	2918(w)	2917(w)	2919(w)	2915(w)	2918(w)	2917(W)	2910(w)
	2856(w)	2851(w)	2850(w)	2851(w)	2852(w)	2154(w)	2850(w)	2853(w)
$\nu_{(C=N)}$	1617(s)	1619(s)	1619(s)	1619(s)	1620(s)	1617(vs)	1619(s)	1620(s)
	1601(s)	1596(w)	1600(m)	1600(s)		1597(s)	1596(m)	1594(s)
ph ring $\nu(c = c)$	1517(vs)	1583(s)	1577(s)	1575(w)	1577(m)	1582(w)	1545(s)	1577(s)
		1568(s)	1525(vs)	1523(s)	1525(s)	1568(w)	1522(s)	1525(w)
		1530(w)	1510(s)	1505(s)	1500(m)	1528(s)	1505(vs)	
ph ring <i>б</i> с-н	1480(w)	1458(s)	1487(s)	1457(s)	1484(m)	1469(vs)	1455(s)	1484(m)
	1458(s)	1430(w)	1459(s)		1458(m)		1430(w)	1458(m)
	1417(w)				1431(w)			1428(m)
$ u_{\text{C-N}}$	1380(m)	1383(m)	1379(s)	1383(s)	1370(m)	1384(s)	1382(m)	1370(m)
ν_{c-c}	1323(m)	1334(m)	1332(s)	1326(m)	1331(s)		1328(m)	1333(s)
ph vc-c	1233(s)	1294(m)	1282(w)	1283(w)	1280(w)	1292(s)	1283(w)	1278(w)
		1276(w)	1243(s)	1230(vs)	1240(s)	1225(s)	1256(w)	1238(s)
		1231(s)					1231(vs)	
Vc-0	1204(w)	1205(w)	1205(s)	1161(m)	1208(w)	1157(s)	1160(m)	1208(w)
VC-N	1160(w)	1156(m)	l162(m)	1144(m)	1163(m)		1143(m)	1162(m)
	1141(w)	1137(m)	1141(m)	1121(w)	1146(m)		1054(m)	1143(m)
		1042(w)	1121(w)		1121(w)			1121(m)
$\nu_{\rm CIOI}$	1100(m)			1099(m)			1100(m)	
ph ring in <i>v</i> с.н	973(w)	975(w)	943(w)	973(m)	979(w)	971(m)	968(m)	975(m)
	925(w)	920(w)	926(w)	925(w)	943(w)	920(w)	923(w)	943(w)
ph ring out VC-H	895(w)	894(m)	826(s)	880(w)	880(w)	888(w)	850(w)	879(w)
	825(m)	859(w)		826(s)	825(s)	826(m)	825(s)	824(m)
		820(w)						
₽m-N	536(m)	553(w)	579(m)	575(w)	578(w)	572(w)	576(w)	578(w)
		506(w)	549(m)	568(m)	579(m)	515(m)	538(m)	548(m)
				504(w)			·	528(m)
Vm-0	466(w)	465(w)	458(m)	460(w)	459(m)	459(w)	457(w)	458(w)

无机化学学报

表 4 的核磁数据表明 8.80~8.90ppm 之间是 CH=N 的氢化学位移,而没有氨基的氢出现;在低 场范围内没有游离的羟基质子化学位移出现,说明 A 中的羟基氧原子已经参与配位;在 3.6~3.9ppm 范围内显示了典型的苯基相连的亚甲基信号;另外 由于铜配合物的顺磁性很强,所以在核磁共振中没 有得到很好的化学位移信号,而是出现了一些展宽 的质子峰。

2.5 电子吸收光谱(Uv-vis)

在 200~700nm 区域内记录的 CHCl₃ 溶液中的 电子光谱显示三个谱带。在 420~490nm 范围内为 弱谱带,归属为偶氮甲烷基 (C=N) 和苯环发色团的 $n-\pi^{*}$ 跃迁,而 300~400nm 区域的谱带被指派为偶 氮甲烷基 C=N 发色团的 $\pi-\pi^{*}$ 跃迁,苯环的 $\pi-\pi^{*}$ 跃迁发生在 200~300nm 范围内,而 d-d跃迁在低 浓度(10⁻⁵)时没有出现。从表中的数据可以看出,不同金属的配合物的电子光谱最大吸收峰值不同,这 与金属的电子结构和配位能力有关^{113,14)}。

2.6 EPR 谱

配合物的 EPR 谱图能够提供有关顺磁离子的 自旋态,配位结构和不同电子状态能级等信息。由于 自旋晶格作用,在室温也能得到清晰的图谱,图 1 是 配合物 1a 室温粉末 EPR 谱图,观测到了典型的双 核铜(II)特征吸收(其他配合物也有类似的谱图结 构),各种配合物在 $g \sim 2.0$ 附近显示一个对称结构 比较好的单峰,线宽只有 80 × 10⁻⁴T,而且有明显的 中场线存在,表明配合物形成双核结构,分子内顺磁 中心的 Cu²⁺(或 Ni²⁺)离子间偶合作用比较强,故在 $g \sim 2.0$ 附近只观测到了一个单峰结构^[17]。

从表6中可以看出双核镍的 g值比铜要小,这

第	9	期

张玉玲等:新型双核席夫碱配合物的合成及谱学性质 表 3 配合物 Raman 光谱数据

· 905 ·

Table 3 Data Raman of the Complexes								(cm - ')
	la	1b	1c	2a	2b	2c	3a	3b
и с.н	3055(m)	3055(m)	3055(m)	3055(m)	3056(m)	3055(m)	3067(m)	3055(m)
₽сњ	2913(m)		2913(w)	2914(w)	2912(w)	2911(w)	2916(w)	2913(w)
νc = N	1601(m)		1618(s)			1617(w)	1601(w)	1595(w)
Vc-c	1577(vs)	1572(vs)	1585(s)	1587(s)	1577(vs)	1564(s)	1587(m)	1576(s)
	1529(m)	1527(w)	1533(m)	1522(m)	1528(s)		1575(s)	1550(w)
		1501(w)					1525(m)	1505(w)
							1503(m)	
νς.c	1487(s)	1484(w)	1479(s)	1455(m)	1482(m)	1477(s)	1481(s)	1482(w)
	1451(m)	1454(w)	1454(w)		1457(m)		1453(m)	1456(w)
v _{c-н} ring	1418(vs)	1420(vs)	1416(m)	1418(s)	1419(vs)	1423(w)	1419(vs)	1422(s)
	1365(s)	1367(vs)	1342(m)	1360(s)	1370(s)	1333(m)	1356(s)	1365(s)
δ_{c-H}	1236(w)	1286(w)	1285(m)	1292(m)	1283(w)	1218(w)	1288(m)	1292(s)
	1209(m)	1208(m)	1209(m)	1234(w)	1231(w)	1201(m)	1226(w)	1236(m)
				1202(m)	1206(m)		1206(s)	1202(s)
<i>v</i> c.o	1053(w)	1046(m)	1045(w)	1047(w)	1048(m)	1045(w)	1048(w)	1054(m)
VM-N	504(w)	548(w)	502(w)	501(w)	505(m)	487(w)	539(w)	
							504(m)	
VM-0	416(w)	411(w)		358(w)	422(w)	348(w)	383(w)	
νς.χ	643(m)	678(w)	656(w)				685(m)	
		645(m)					643(w)	

表 4 配合物的 'H NMR 化学位移

Table 4 ¹H NMR Chemistry Shift of the Complexes(ppm)(solvent: DMSO)

	Ib	1c	2b	2c	3b
CH = N	8.84(s)	8.80(s), 8.95(s)	8.81(b)	8.81(s)	8.80(s), 8.85(s)
Ar-H	8.13~6.14(m)	7.87~6.47(m)	8. 14 ~ 6. 12(m)	7.92~6.25(m)	8.15~6.15(m)
CH2	3.77(s)	3. 70, 3. 60(d)	3.78(s)	3.80(s), 3.91(s)	3.81(s), 3.77(s)
CH3			2. 02(d)	2.08(d)	

表 5 配合物电子光谱吸收峰

Table 5	Electronic	Spectra-A	bsorption	Peaks	of the	Comple	exes
---------	------------	-----------	-----------	-------	--------	--------	------

	Uv-Vis λ_{max}/nm ($\varepsilon/(mol^{-1} \cdot dm^3 \cdot cm^{-1})$)							
	<u>1b</u>	10	2a	2b	2c	3a	3b	
$n \rightarrow \pi^*$	479(12965)	455(2364)	432(11900)	486(1138)	465(432)	440(4365)	483(3919)	
$\pi \rightarrow \pi^*$	380(32534)	326(4728)	312(20300)	381(2601)	339(3243)	313(44324)	381(9993)	
$\pi \rightarrow \pi^*$	260(62622)	262(6589)	240(26330)	264(4244)	264(6189)	256(64864)	263(20509)	

表 6	配合物顺磁数据
7R 0	

Table 6 Data of EPR of Complexes

	1a	1b	2a	2b	3a	3b
g	2.049	2.005	2.058	2.006	2.038	2.002

是由于 Ni²⁺是 3 d⁸ 结构, 有两个未成对电子, 它有一 个较弱的自旋晶格作用; 而 Cu²⁺是 3 d⁹ 结构, 只有 一个未成对电子, 因此不管离子被放在什么几何形 状中, 都只有一个 S = 1/2 的组态, 自旋并不依赖于 配体场的强度变化, 始终有一个 Kramer 双重基态, 任何温度, 任何晶格中都能够观测到 EPR 谱, 故铜 稍强于镍配合物。另外由于苯环上取代基的推电子

· 906 ·

效应 CH₃ > X(Cl, Br)逐渐增大,使得酚羟基上的氧 电子云密度增大,参与配位能力较强,晶体场也相对 较强,相应的 g 值也较大。

参考文献

- [1] Kahn O., Adv. Inorg. Chem., 1995, 34, 179.
- [2] An H., Bradshaw J. S., Izatt R. M. Chem. Rev, 1992, 92, 543.
- [3] TANG Ting (唐 婷), GONG Yu-Qiu (龚钰秋) Wuji Huaxue Xuebao (Chin. J. Inorg. Chem.), 2001, 17(5), 745.
- [4] I.J Wu-Ju(李五聚), SHI Zan(史 瓒), LI Shi-Yin(李时银), TANG Jun-Ming(汤俊明) Wuji Huaxue Xuebao (Chin. J. Inorg. Chem.), 2000, 16(3), 510.
- [5] Chang S., Heid R. M., Jacobsen E. N., Tetrahedron Lett., 1994, 35, 669.
- [6] ZHANG Yu-Ling, GAO Feng, RUAN Wen-Juan et al Chin.J. Chem., 2001, 19(12), 1296
- [7] DU Xiang-Dong(杜向东), YU Xian-Da(俞贤达) Gaodeng Xuexiao Huaxue Xuebao(Chem. J. Chin. Univ.), 1997, 18 (4), 567.
- [8] Du Xiang-Dong, YU Xian-Da J. Poly. Sci, Part A: Poly. Chem., 1997, 35, 3249.

- [9] Marvel C. S., Tarköy N. J. Am. Chem. Soc., 1957, 9, 6000.
 [10] Atkins R., Brewer G., Kokot E. et al Inorg. Chem., 1985, 24, 127.
- [11] Maclachlan M. J., Park M. K., Thompson L. L. Inorg. Chem., 1996, 35, 5492.
- [12] Janssen K. B. M., Laquuiere I., Dehaen W. et al Tetrahedron Asymmetry, 1997, 8, 3481.
- [13]Felicio R. C., Cavalheiro E. T. G., Dockal E. R. Polyhedron, 2001, 20, 261.
- [14]SHI Wei-Liang(史卫良), CHEN DE-Yu(陈德余), WU Qing-Zhou(吴清洲) Wuji Huaxue Xuebao(Chin. J. Inorg. Chem.), 1999, 15(6), 761.
- [15]GUO Li-Jun(郭立俊), JI Tian-Hao(嵇天浩), LIU Chang-Chun(李长春) et al Guangpuxue Yu Guangpu Fenxi (Spectroscopy and Spectral Analysis (Chinese)), 2001, 21 (3), 317.
- [16]ZHU Zi-Ying(朱自莹), GU Ren-Ao(顾仁敖), LU Tian-Hong(陆天虹) Application of Raman Spectrum in Chemistry (拉曼光谱在化学中的应用), Shenyang: Northeast University Press, 1998.
- [17]YAO Ke-Min(姚克敏), WU Jing(吴 静), XU Qing(徐 青) et al Huaxue Xuebao(Acta Chimica Sinica), 2001, 59 (3), 417.

Synthesis and Spectra Properties of Novel Binuclear Schiff Base Complexes

ZHANG Yu-Ling RUAN Wen-Juan HU Guo-Hang ZHU Zhi-Ang* (Department of Chemistry, Nankai University, Tianjin 300071)

Eight novel binuclear tetradentate Schiff base complexes (M = Cu(II), Ni(II), Zn(II)) are synthesized. The structure of complexes is two discrete Schiff base unit bridged. The complexes were condensed from series substituent Ketones (5-chloro-2-hydroxybenzophenone, 5-methyl-2-hydroxy-benzophenone, 5-Bromo-2-hydroxybenzophenone) and dialdehydes (5, 5'-methylene-disalicylaldehyde) with the amino group of 1, 2-diaminobenzene, and by Metal ion as template. The compounds were characterized by elemental analyses, FT-infrared spectra, Raman, 'H NMR, UV-vis electronic spectra, EPR spectra. The FT-infrared spectra and Raman spectra of complexes were compared and discussed. The UV-vis election spectra, 'H NMR and EPR spectra of complexes have also been attributed and minutely analyzed.

Keywords:

Schiff base

binuclear complexes

exes syntheses and properties