研究简报

过渡金属 - 碱土金属铜镁异双核配合物的合成、晶体结构和性质研究

陶偌偈* 臧双全 于兆文

(河南大学化学化工学院,开封 475001)

关键词:	铜	镁	异双核配合物	热性质	EPR
分类号:	0614. 12	21	0614. 22		

在配合物分子设计中, 以酚氧为桥基结构新奇 的双核配合物的合成仍为活跃领域之一[1~5]。3- 羧 基水杨醛与 1, 3- 丙二胺形成的 Schiff 碱配体 (TS) 是较好的酚氧桥联配体,它的过渡金属双核配合物 的合成、表征和磁性已进行研究[6~8]。碱土金属元素 中钙镁离子在保持细胞壁的结构与调节细胞壁的功 能上起着重要的作用,它们既有酶激活剂的功能,有 对控制半透膜的渗透能力和神经细胞薄膜产生兴奋 发挥着重要作用,因此被称做"生命"金属。深入细 致的研究该族元素配合物的结构,配位特点对进一 步弄清 Ca²⁺, Mg²⁺在一切生命过程中的生理及生化 机制有着重要的意义[9]。过渡金属-碱土金属桥联 异双核配合物的报道并不多见。本文以 Schiff 碱 TS 为配体成功地把过渡金属离子和碱土金属离子通过 酚氧原子桥联在一起形成了桥联异双核配合物,并 首次报道了标题化合物的合成、表征、晶体结构、热 性质和 EPR 谱图研究。

1 实验部分

1.1 标题化合物的合成及单晶制备

单核配合物 Na₂CuTS · 2H₂O 按文献^[6]方法制 备,标题化合物的合成用 1×10^{-4} mol 的 Na₂CuTS · 2H₂O 溶于 10mL 甲醇中,在搅拌条件下向上述溶液 中滴加 1×10^{-4} mol Mg(CH₃COO)₂ · 2H₂O 的 10mL 甲醇溶液,反应 30min 后过滤,滤液缓慢挥发两周 后析出墨绿色块状晶体。制得的晶体化合物的元素 分析与按化学式[CuMg(TS)(H₂O)]·H₂O 的计算值 吻合。计算值(%): C, 46. 55; H, 3. 70; N, 5. 71。实测 值(%): C, 46. 13; H, 3. 74; N, 5. 64。

1.2 配合物的元素分析、红外、电子光谱、热分析、 电子自旋共振光谱测试

C、H、N含量用 PE-2400II 型元素分析仪测定,
红外光谱和电子光谱分别用 Avater-360 红外光谱仪
(KBr 压片)和 Beckman Du-50 分光光谱仪测定。热
重分析,取 5.65794mg 的异双核配合物 [CuMg(TS)
(H₂O)]·H₂O,在通 N₂(180mL·min⁻¹),升温速率为
10℃·min⁻¹条件下,以氧化铝(5.80000mg)为参照
物在 Perkin Elmer-7 型热分析仪上测试。EPR 谱用
Varian E-115 型电子自旋共振仪在 X 波段测定(锰标)。

1.3 配合物的结构测定

选取大小为 0. 26mm × 0. 23mm × 0. 18mm 的晶 体用于 X 射线晶体结构测定, 衍射数据在 R-axis-IV 四圆衍射仪上收集, 用经石墨单色化的 Mo K α 辐射 作为衍射光源($\lambda = 0.71073$ Å), 以 $\theta/2\theta$ 扫描方式, 2 θ 在 3. 94° ~ 50. 00°范围内共收集 5342 个衍射点, 其中 2870 个点为独立衍射点($R_{int} = 0.0220$)。强度 数据经 LP 因子及经验吸收校正, 晶体结构由直接 法解出。根据 E- 图确定金属原子位置。其余非氢原 子坐标在以后的逐次差值 Fourier 合成中逐步确定, 对全部非氢原子坐标及各向异性参数进行全矩阵最 小二次乘法修正, 氢原子根据理论添加法得到。以 *I* > 2 $\sigma(I$) 的数据修正到一致性因子 $R_1 = 0.0364$, w $R_2 = 0.0920$ 。差值电子云密度的最高峰为

收稿日期:2002-03-02。收修改稿日期:2002-07-01。

河南省杰出青年基金资助项目(No. 0040301800),河南省科委基金资助项目(No. 211021300)。

* 通讯联系人。E-mail: rjtao@ sina. com

第一作者:陶偌偈,女,45岁,副教授;研究方向:功能配合物。

0.595e · Å⁻³, 最低峰为 – 0.425e · Å⁻³。配合物属单 斜晶系,空间群为 $P2_1/n$,晶格参数为 a = 12.041(2) Å, b = 14.736(3) Å, c = 12.062(2) Å, $\beta = 118.00$ (3)°, $M_r = 490.214$, $D_c = 1.723$ Mg · m⁻³, F(000) = 1004, Z = 4。所有计算均用 SHELXL-97 程序完成。

CCDC: 182408_{\circ}

2 结果与讨论

2.1 配合物的红外光谱和电子光谱

红外光谱图中, [CuMg(TS) (H₂O)] · H₂O 配合 物在 1620cm⁻¹ 处的峰可指派为 $\nu_{(c=N)}$ 的伸缩振动 峰,在 1565cm⁻¹ 处出现的吸收峰可指派为羧酸根离 子的反对称伸缩振动 ν_{aa} (coo⁻)^[10, 11]。与单核配合物 (1548cm⁻¹)相比较,羧酸根离子的反对称伸缩振动 ν_{aa} (coo⁻)振动频率增大 17cm⁻¹,说明第二金属已与羧 基配位形成双核配合物,这也与该配体的铜钴异双 核配合物的观察一致^[12]。在1300cm⁻¹ 附近单核配 合物及双核配合物均出现了 $\nu_{(ph·0)}$ 振动吸收峰^[11], 且双核配合物较单核配合物红移 12cm⁻¹ 进一步证 实了第二金属离子的配位。

异双核[CuMg(TS)(H₂O)]·H₂O 配合物在可见 区仅在 609nm 处观察到一个吸收峰,可指派为"内 部"Cu(II)的 d-d 跃迁,这与 Mg(II)无 d-d 跃迁的事 实是一致的。与单核配合物(649nm)相比较^[6],内部 Cu(II)的 d-d 跃迁向高频率移动发生了蓝移,证明通 过酚氧桥联形成了双核配合物。

2.2 配合物的晶体结构

配合物的非氢原子坐标和等效热参数列于表 1,主要键长和键角列于表 2,配合物晶体结构见图 1。

表	1	配合物的非复原子坐标和等效热参数
~		

Table 1	Position ($\times10^4$) and Equivalent Isotropic Displacement Parameters (Å $^2\times10^3$)
	for the Non-hydrogen Atoms of Complex

atom	x	<u>y</u>	z	U(eq)	atom	<i>x</i>	y	z	U(eq)
Cu(1)	1898(1)	340(1)	1179(1)	28(1)	C(5)	4495(4)	- 1294(3)	- 99(4)	46(1)
Mg(1)	1304(1)	1562(1)	- 1090(1)	23(1)	C(6)	2874(3)	- 134(2)	- 616(3)	29(1)
0(1)	1433(2)	1229(2)	- 2586(2)	50(1)	C(7)	3754(3)	- 745(2)	259(3)	33(1)
0(2)	1497(3)	290(2)	- 3973(2)	40(1)	C(8)	3913(3)	- 881(2)	1503(3)	36(1)
0(3)	2172(2)	385(2)	-284(2)	29(1)	C(9)	3675(4)	- 906(3)	3304(3)	47(1)
0(4)	621(2)	1234(1)	114(2)	29(1)	C(10)	3260(4)	- 329(3)	4065(3)	45(1)
0(5)	- 202(2)	2281(2)	- 2023(2)	46(1)	C(11)	1841(4)	-271(2)	3520(3)	42(1)
0(6)	- 1910(3)	3075(2)	- 2538(2)	56(1)	C(12)	445(3)	899(2)	2389(3)	32(1)
0(1w)	2620(3)	2438(2)	65(3)	46(1)	C(13)	- 275(3)	574(2)	1454(3)	29(1)
O(2w)	4260(3)	3484(2)	- 260(3)	49(1)	C(14)	- 1119(3)	2089(2)	1710(3)	37(1)
N(1)	3288(3)	- 544(2)	2026(3)	34(1)	C(15)	- 1908(3)	2723(2)	852(4)	41(1)
N(2)	1276(3)	336(2)	2413(2)	29(1)	C(16)	- 1840(3)	2847(2)	- 247(3)	35(1)
C(1)	1829(3)	504(2)	- 2870(3)	33(1)	C(17)	- 180(3)	1723(2)	342(3)	25(1)
C(2)	2749(3)	- 100(2)	- 1839(3)	30(1)	C(18)	- 994(3)	2379(2)	- 535(3)	29(1)
C(3)	3492(3)	- 674(3)	- 2146(4)	41(1)	C(19)	- 1032(3)	2603(2)	- 1770(3)	34(1)
C(4)	4365(4)	- 1260(3)	- 1289(4)	50(1)			_		

表 2 配合物的主要键长和键角

Table 2 Bond Lengths(Å) and Angles (°) around the Metals in the Molecular Structure of the Complex

bond lengths							
Cu(1)-O(3) 1.943(2) Cu(1)-N(2)		1.955(3)	Cu(1)-O(4)	1.973(2)			
Cu(1)-N(1)	1,985(3)	Mg(1)-O(1)	1.946(2)	Mg(1)-O(5)	1.939(3)		
Mg(1) - O(1w)	2.011(3)	Mg(1) - O(3)	2.023(2)	Mg(1)-O(4)	2.034(2)		
· <u> </u>		bond ang	gles				
Cu(1)-O(3)-Mg1	101. 28(10)	Cu(1)-O(4)-Mg(1)	99.85(9)	O(3)-Cu(1)-O(4)	78.37(9)		
O(3)-Cu(1)-N(1)	91.60(10)	N(2)-Cu(1)-N(1)	97.92(11)	O(4)-Cu(1)-N(2)	92.20(10)		
O(1) - Mg(1) - O(3)	88.91(10)	O(1) - Mg(1) - O(5)	93. 42(11)	O(3)-Mg(1)-O(4)	75.19(9)		
O(5)-Mg(1)-O(4)	87.88(10)	O(1w) - Mg(1) - O(1)	115.07(13)	O(1w) - Mg(1) - O(3)	99,01(12)		
01w-Mg1-04	96. 29(11)	01w-Mg1-05	105.60(13)				

第9期

• 909 •

图 1 配合物的晶体结构图 Fig. 1 Crystal structure of the complex

在双核配合物[CuMg(TS)(H₂O)]・H₂O分子中 两个金属原子 Cu1, Mg1 通过两个酚氧原子 O3, O4 桥联在一起、分别占据由配体 TS 形成的两个孔穴, 形成桥联双核配合物。Cu1-O3-Mg1 夹角为 101.28 (10)°, Cu1-O4-Mg1 夹角为 99.85(9)°。"内部"铜原 子 Cul 分别与两个氮原子 N1, N2, 两个酚氧原子 O3, O4 配位。铜原子位于由 N1, N2, O3, O4 所形成 的平面上方约 0.17Å。铜原子处于近似平面正方构 型之中。"外部"镁原子 Mg1 分别与两个酚氧原子 03.04, 两个端基羧氧原子 01, 05 及轴向水分子中 的 O1w 配位、轴向和平面所形成的夹角分别为 O1w-Mg1-O1, 115.07(13)°; O1w-Mg1-O3, 99.01 (12)°; 01w-Mg1-04, 96.29(11)°; 01w-Mg1-05, 105.60(13)°较正常的四方锥(90°)大6.29-25.07°, 因此镁原子处于变形四方锥几何构型。Mg1-O1w 键 长为 2.011(3) Å, 与平面场中键长 Mg1-O3, 2.023 (2) Å; Mg1-O4, 2.034(7) Å; Mg1-O1, 1.946(2) Å; Mg1-05, 1.939(3) Å 键长相当, 说明水分子与 Mg1 原子形成了较强的配位键。Mgl 原子与两个酚氧原 子所成键 Mg1-O3, Mg1-O4 平均键长 (2.028Å) 明显 长于 Mg1 原子与端基羧氧所成键 Mg1-02, Mg1-06 平均键长(1.943Å)。与该系列过渡金属双核配合物 观察是一致的[12,13]。

在晶胞堆积中存在分子内和分子间两种氢键: 配合物分子中 O2w 与同一分子中的配位水分子中 的 O1w 形成分子内氢键 (键长为 2.675Å, 键角为 173. 51°, 对称操作为 x + 1/2, -y + 1/2, z + 1/2), 同时 O2w 还与相邻分子中的 O2'形成氢键(键长为 2. 826Å, 键角为 171. 91°, 对称操作为 -x + 1/2, y + 1/2, z + 1/2); O1w 与相邻分子中的 O6 也形成 分子间氢键(键长为 2. 778Å, 键角为 165. 29°, 对称 操作为 x + 1/2, -y + 1/2, z + 1/2)。氢键作用使双 核配合物[CuMg(TS)(H₂O)]·H₂O 分子在晶胞堆积 图中呈空间网状分布, 从而增加了晶体结构的稳定 性,特别是结晶水的稳定性。在分子排布中两个双核 分子采取空间位阻小的方式(即配位水反面)反式平 行交错分布。

2.3 配合物的热性质研究

异双核配合物[CuMg(TS)(H₂O)]·H₂O的TG-DTA-DTG曲线见图 2,由TG-DTA-DTG曲线可以看 出,TG曲线在170℃以前为一直线无失重。TG曲线 在170℃附近有一明显失重现象,一次性失重率 7.89%(理论值2H₂O%为7.35%),对应DTA曲线 有较强的吸热过程,DTG曲线在174.7℃附近有较 大的失重百分比。根据晶体结构分析可知配合物 [CuMg(TS)(H₂O)]·H₂O在170℃同时失去了一分 子配位水和一分子结晶水。结晶水具有较高的失水 温度是由于结晶水与异双核形成了氢键相互作用的 缘故。这也表明失水温度的高低不仅取决于水是否 配位,也与其存在形式有较大的关系。从404℃开 始,TG曲线有一大的失重现象,对应DTA曲线出现 了明显的较宽放热峰,而DTG曲线出现了大的累计 失重百分比,此过程为配合物分子骨架崩溃过程。

图 2 配合物的热分析曲线

Fig. 2 TG-DTA-DTG curve of the complex

2.4 配合物的 EPR 谱

在室温下测定配合物的粉末 EPR 谱, 见图 3。结 果表明室温下的铜镁异双核配合物中具有一个单电

· 910 ·

子的铜离子的配位环境具有轴对称性质,金属离子 Cu (II)中有一个未偶合的 d 电子未参与成键作用。根 据 EPR 谱计算得: $g_{//} = 2.178, g_{\perp} = 2.081, 且 g_{//} > g_{\perp}, 可知未偶合电子处于<math>d_{x'-y'}$ 轨道上,配合物中 Cu (II)离子周围的配位数为偶数^[14, 15],与晶体结构分析 中铜原子的配位环境为近似平面正方构型的事实是 一致的。

参考文献

- Sayaka Yamanaka, Hisashi Ökawa, Ken-ichiro Motoda et al Inorg. Chem., 1999, 38, 1825.
- [2] Carbonaro L., Isola M., Pegna P. L. et al Inorg. Chem., 1999, 38, 55, 19.

- [3] Costes J. -P., Dahan F., Dupuis A. et al Inorg. Chem., 2000, 39, 169.
- [4] Erxleben A. Inorg. Chem., 2001, 40, 208.
- [5] Liable-sands L. M., Incarvito C., Rheingold A. L. et al Inorg. Chem., 2001, 40, 2147
- [6] ZHOU Xu-Ya(周绪亚), TAO Ruo-Jie(陶偌偈), YU Zhao-Wen(于兆文) et al Gaodeng Xuexiao Huaxue Xuebao (Chem. J. Chin. Univ.), 1991, 12, 587.
- [7] ZHOU Xu-Ya, YU Zhao-Wen, TAO Ruo-Jie et al Polyhedron., 1992, 11, 3041.
- [8] YU Zhao-Wen, TAO Ruo-Jie, ZHOU Xu-Ya et al Polyhedron., 1994, 13, 951
- [9] YANG Zheng-Yin(杨正银), YANG Ru-Dong(杨汝栋), YU Kai-Bei(郁开北) Huaxue Xuebao(Acta Chimica Sinica), 1999, 57, 236.
- [10]Kazuo Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4 th Ed., Wiley and Sons: New York, 1986.
- [11] ZHONG Guo-Qing(钟国清), CHEN Ya-Ru(陈娅如), ZANG Xiang-Sheng(滅祥生), LUAN Shao-Rong(栾绍嵘) Wuji Huaxue Xuebao(Chinese J. Inorg. Chem.), 2001, 17, 597.
- [12]TAO Ruo-Jie(陶偌偈), ZANG Shuang-Quan(臧双全), NIU Jing-Yang(牛景扬) et al Wuji Huaxue Xuebao(Chinese J. Inorg. Chem.), 2002, 18, 417.
- [13] TAO Ruo-Jie(陶偌偈), ZANG Shuang-Quan(臧双全), NIU Jing-Yang(牛景扬) et al Wuji Huaxue Xuebao(Chinese J. Inorg. Chem.), 2002, 18, 409.
- [14] WANG Jian-Hua(王建华) Wuji Huaxue Xuebao(Chinese J. Inorg. Chem.), 1996, 12, 206.
- [15]LEI Xiu-Bin (雷秀斌), XIAO Wen-Jin (萧文锦) Wuji Huaxue Xuebao (Chinese J. Inorg. Chem.), 1989, 5, 14.

Synthesis, Molecular Structure and Properties of Heterometal Binuclear Complex, [CuMg(TS)(H₂O)] · H₂O

TAO Ruo-Jie^{*} ZANG Shuang-Quan YU Zhao-Wen NIU Jing-Yang (Chemistry and Chemical Engineering College of Henan University, Kaifeng 475001)

The transition metal and alkaline earth metal heterobinuclear complex [CuMg(TS)(H₂O) · H₂O], where TS is the schiff base N, N'-bis(3-carboxylsalidene) trimethylenediamine, was synthesised and its crystal structure was determined by the single-crystal X-ray diffraction method at room temperature. It crystallizes in the monoclinic system, space group $P2_1/n$. The lattice parameters are a = 12.041(2) Å, b = 14.736(3) Å, c = 12.062(2) Å, $\beta = 118.00(3)^\circ$, Z = 4 with $R_1 = 0.0364$. The thermal property and EPR studies of the complex according to crystal structure are also investigated. CCDC: 182408.

Keyword:

copper magnesium

heterobinuclear complex

thermal property EPR