Vol. 18, No. 9 Sep., 2002

研究简报

$[Cu(Hsal)_2(py)_2]_n$ 晶体结构和二维堆积网络

朱龙观^{*,1} 蔡国强¹ Susumu Kitagawa² Ho-Chol Chang² (¹浙江大学化学系,杭州 310027)

(²京都大学工学部合成・生物化学系,京都 606-8501 日本)

关键词:	吡啶	水杨酸	晶体结构	芳环堆积	网络
分类号:	614. 121				

0 引 言

水杨酸具有羧基和羟基,是双功能基配体,羧基 和羟基可分别脱去氢,因此有多种形式可参与配位 (见 Scheme 1),其中 Hsal-1的形式仅见一例报道^[1], 其可靠性有待更多的研究来确证。对铜/水杨酸/吡 啶三元体系的研究已有多篇文献报道^[2-4],亦有几 种化合物合成,例如 Cu(Hsal)₂(py)₂和 Cu(sal)(py)₂ 等。配合物 Cu(sal)(py)₂的可靠性值得怀疑,原文中 无合成和表征^[3]。铜/水杨酸/吡啶衍生物三元体系 已有多个晶体结构报道^[5,6],但迄今无铜/水杨酸/ 吡啶三元体系晶体结构报道。

Scheme 1 Some coordination modes of salicylic acid

对于配合物 Cu(Hsal)₂(py)₂,其结构形式有多 种说法,例如 Garaj 等描述了 α 和 β 二种结构^[7],从 磁性测定判断 α 和 β 二种形式结构上差异很小,并 认为与[Cu(Hsal)₂(H₂O)₂]有相似结构,即铜原子具 有变形八面体配位几何构型^[8]。从 ESR 的研究推测 铜具有六配位的八面体配位几何构型,二个吡啶配 体的氮和二个水杨酸根各二个氧组成配位八面体几 何构型^[4]。我们利用溶液分层技术合成得到了呈一 维结构的配合物 [Cu(Hsal) 2(py) 2],, 铜的配位数为 五。

1 实验部分

1.1 配合物合成

用溶液分层方法在细长的试管(直径 0.7mm, 长 20cm)中合成标题配合物。上层溶液为 2mL 甲醇 含 0.05mol·L⁻¹ Cu(CH₃COO)₂·H₂O 和 0.2mol· L⁻¹的水杨酸;下层为 1mL 吡啶溶液。兰色晶体很快 出现, 5~10 分钟后取出晶体产物。如果产物不取 出,会逐渐消失,大约 1 小时产物全部消失,无论放 置多长时间,不再有任何固体产物析出。元素分析结 果(以[Cu(Hsal)₂(py)₂]计):理论计算(%),C, 58.12; N,5.65; H,4.06。实验值,C,58.06; N,5.67; H,4.08。IR 谱分析结果(cm⁻¹):1627(m),1607(m), 1580(m),1567(m),1484(m),1451(s),1390(s), 1355(m),1254(s),1160(w),863(w),817(w),757 (w),744(w),691(w),672(w),529(w),414(w)。

1.2 晶体结构测定

取尺寸为 0.4mm × 0.2mm × 0.1mm 的兰色板 状晶体安装在玻璃纤维上,用 Mercury CCD 在室温 下(293K)收集衍射数据, Mo K α 射线($\lambda = 0.071069$ nm)、石墨单色器。最大 2 θ 为 54.3°,共收集衍射 数据 7764 个,其中 4530 个独立衍射点($R_{int} =$ 0.021)。结构用 Patterson 方法和 Fourier 合成技术解 析。非氢原子各向异性精修。最终全矩阵最小二乘精

收稿日期:2002-03-20。收修改稿日期:2002-04-22。

国家自然科学基金资助项目(No. 50073019)。

^{*}通讯联系人。E-mail: chezlg@ zju. edu. cn

第一作者:朱龙观,男,38岁,博士,教授;研究方向:功能配位化学。

修是基于 3844 个观察衍射点 $[I > 3.00 \sigma(I)]$ 和 358 个参数。结构解析用 teXsan 软件包。结构图由 ORTEP-3 for Windows 软件产生^[9]。解析结果如下: 化学式 CuN₂O₆C₂₄H₂₀, 式量为 495.98, 三斜, 空间群 为 $P\overline{1}$, a = 0.73673(8) nm, b = 1.08514(5) nm, c =1.4722(2) nm, $\alpha = 108.377(3)^\circ$, $\beta = 93.848(1)^\circ$, $\gamma = 103.8089(9)^\circ$, V = 1.0709(2) nm³, Z = 2, $D_c =$ 1.538Mg · m⁻³, μ (Mo K α) = 1.065mm⁻¹, F(000) =510, GOF = 2.68, R = 0.038, $R_w = 0.054$, $\rho_{max} = 250$ $e \cdot nm^{-3}$ \mathcal{B} $\rho_{min} = -410e \cdot nm^{-3}$ 。

CCDC: 181955^[10]。

2 结果和讨论

配合物的非氢原子坐标和热参数以及主要键 长、键角分别列于表 1 和表 2 中。分子结构图见图 1。配合物中铜的配位数为 5,配位多面体由二个水 杨酸根的三个氧和二个吡啶配体的二个氮原子组 成,形成正方锥构型。锥底原子为 O(1),O(4),N(1) 和 N(2),锥顶为 O(3[•])。Cu-O(3[•])键长为 0.2503 (2) nm,其键强较弱。二个水杨酸根的配位方式 不一样,一个水杨酸根仅有羧基单齿配位;另一个 水杨酸根羧基和羟基均配位,由于此水杨酸根的 双功能基均参与配位,使配合物结构呈线形一维链, 见图 2。二个水杨酸根的相对位置呈蟹钳状,这种 配置方式在水杨酸配合物中很少见。由于一维链 与一维链之间的吡啶环之间具有芳环堆积作用, 二吡啶环平面完全平行,平面间距为 0.365nm,使之 形成了堆积的 2-D 网络,见图 3。标题配合物与 [Cu(Hsal)₂(H₂O)₂],配合物^[11]的结构有相似之处,

图 1 配合物[Cu(Hsal)₂(py)₂]_n的 ORTEP 图 Fig. 1 ORTEP view of the complex [Cu(Hsal)₂(py)₂]_n

图 3 配合物[Cu(Hsal)₂(py)₂]。的二维堆积网络 Fig. 3 2-D stacking network of the complex [Cu(Hsal)₂(py)₂]_n

朱龙观等: [Cu(Hsal)₂(py)₂], 晶体结构和二维堆积网络

· 913 ·

	表 1 非氢原子坐标和热参数
Table 1	Non-Hydrogen Atomic Coordinates (×10 ⁴) and Thermal Parameters (×10 ⁴ nm ²)

atom	x	y	z	Beq	atom	x	y	z	Beq
Cu(1)	2151.8(4)	4317.3(3)	2278.5(2)	2.728(7)	C(9)	5059(3)	8384(2)	3325(2)	3.05(5)
0(1)	64(2)	2645(2)	1855(1)	2.97(3)	C(10)	4440(4)	9556(3)	3582(2)	4.12(6)
0(2)	- 1741(2)	4023(2)	2325(1)	3.38(3)	C(11)	5768(5)	10813(3)	3948(3)	5.84(6)
0(3)	-5310(3)	3120(2)	2041(1)	3.71(4)	C(12)	7642(5)	10907(3)	4048(3)	6.18(8)
0(4)	4258(3)	5990(2)	2725(1)	3.46(4)	C(13)	8302(4)	9771(3)	3787(3)	4.97(7)
0(5)	1929(3)	6966(2)	2869(2)	4.71(5)	C(14)	7003(4)	8516(2)	3424(2)	3.43(5)
0(6)	2601(3)	9524(2)	3493(2)	6.11(6)	C(15)	2304(4)	3129(3)	3810(2)	3.38(5)
N(1)	2260(3)	4273(2)	3645(1)	2.89(4)	C(16)	2445(4)	3042(3)	4719(2)	3.80(6)
N(2)	2101(3)	4250(2)	0876(1)	2.98(4)	C(17)	2527(4)	4165(3)	5505(2)	4.28(6)
C(1)	- 1544(3)	2858(2)	1973(1)	2.45(4)	C(18)	2480(5)	5344(3)	5344(2)	4.46(6)
C(2)	- 3246(3)	1675(2)	1668(2)	2.70(4)	C(19)	2342(4)	5361(3)	4418(2)	3.69(5)
C(3)	- 5058(3)	1860(2)	1715(2)	2.89(4)	C(20)	1592(4)	3059(3)	143(2)	3.66(5)
C(4)	-6642(4)	762(3)	1435(2)	3.75(5)	C(21)	1528(5)	950(3)	- 808(2)	4.38(6)
C(5)	-6435(4)	- 523(3)	1106(3)	4.73(6)	C(22)	1987(5)	4096(3)	- 1055(2)	4.41(7)
C(6)	- 4666(5)	-734(3)	1054(3)	5.25(7)	C(23)	2532(5)	5326(3)	- 306(2)	4.82(7)
C(7)	- 3090(4)	364(3)	1331(2)	4.00(6)	C(24)	2567(5)	5364(3)	628(2)	4.21(6)
C(8)	3644(3)	7035(2)	2965(2)	3.17(5)					
				表2 主要	键长和键角				
		Т	bla 2 Sala	rtad Rond I	engths (nm)	,) and Angle	s (°)		
Cu(1)-	0(1) 0.19	67(1) Cı	ı(1)-O(4)	0. 1974(2)	Cu(1)-(D(3 [•]) 0.	2503(2)	Cu(1)-N(1)	0.2024(2)
Cu(1)-	N(2) 0.20	40(2) C	(1)-0(1)	0.1273(3)	C(1)-0	(2) 0.	1254(3)	C(1)-C(2)	0.1488(3)
C(3)-C	0(3) 0.13	60(3) C	(8)-0(4)	0.1276(3)	C(8)-0	(5) 0.	1243(3)	C(8)-C(9)	0.1489(3)
C(10)-	0(6) 0, 13	43(3)							

0(1)-Cu(1)-O(4)	178.99(8)	O(1)-Cu(1)-N(1)	88.77(7)	O(1)-Cu(1)-N(2)	89.75(7)	$O(1)-Cu(1)-O(3^{\circ})$	94. 46(8)
O(4)-Cu(1)-N(1)	90.25(7)	O(4)-Cu(1)-N(2)	91.21(7)	$O(4)-Cu(1)-O(3^*)$	85.24(8)	N(1)-Cu(1)-N(2)	176. 27(9)
N(1)-Cu(1)-O(3*)	88.57(8)	N(2)-Cu(1)-O(3 [•])	88.12(9)	Cu(1)-O(1)-C(1)	113.1(1)	Cu(1)-O(4)-C(8)	111.1(2)
O(1)-C(1)-O(2)	122.4(2)	O(1)-C(1)-C(2)	118.4(2)	C(2)-C(3)-O(3)	121.1(2)	O(4)-C(8)-O(5)	122.6(2)
O(4)-C(8)-C(9)	117.9(2)	C(9)-C(10)-O(6)	122.8(2)				

*symmetry code: 1/2 - x, y, z

但有差别。[Cu(Hsal)₂(H₂O)₂]配合物本身有多种 结构,如单核^[12]、双核^[13]和聚合物链状^[11]等。 [Cu(Hsal)₂(H₂O)₂],配合物呈无序结构,二个水杨 酸根呈"假蟹钳状",即与标题配合物相比,其中的一 个水杨酸根翻转了 180°。

参考文献

- [1] Edwards C. F., Griffith W. P., White A. J. P., Williams D. J. Polyhedron, 1992, 11(20), 2711.
- [2] Cazorla C., Martinez F., Del Valle C., Orte J. C. et al An.
 R. Acad. Farm., 1986, 52(6), 697; CA: 107, 102522.
- [3] DONG Zu-Dong(董祖东), WANG Bao(汪 苞), YAN Chuan-Hui(鄒传徽) Fenxi Shiyanshi (Chinese Analytical Lab), 1988, 7(2), 8.
- [4] Mahajan M., Saxena K. N., Saxena C. P. J. Inorg. Nucl.

Chem., 1981, 43, 2148

- [5] Hoang N. N., Valach F., Dunaj-Jurco M., Melnik M. Acta Cryst., 1992, C48, 443.
- [6] Hoang N. N., Valach F., Macaskova L., Melnik M. Acta Cryst., 1992, C48, 1933.
- [7] Garaj J., Kratsmar-Smogrovic J. Chem. Abstra., 65, 6705a.
- [8] Kohout J., Gazo J., Kratsmar-Smogrovic J. Chem. Zvesti, 1968, 22(11), 813.
- [9] Farrugia L. J. J. App. Cryst., 1997, 30, 565.
- [10]Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Center as supplementary publication no. CCDC: 181955. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)1223-336-033; E-mail: deposit@ ccdc. cam. ac. uk).
- [11] Jagner S., Hazell G. R., Larsen K. P. Acta Cryst., 1976,

· 914 ·

第 18 卷

[12] Hanic F., Michalov J. Acta Cryst., 1960, 13, 279.

[13] Inoue M., Kishita M., Kubo M. Acta Cryst., 1963, 16, 699.

Crystal Structure and 2-D Stacking Network of $[Cu(Hsal)_2(py)_2]_n$

ZHU Long-Guan*.1 CAI Guo-Qiang1 Susumu Kitagawa2 Ho-Chol Chang2

(1 Department of Chemistry, Zhejiang University, Hangzhou 310027)

(² Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering,

Kyoto University, Kyoto 606-8501 Japan)

The title complex, $[Cu(Hsal)_2(py)_2]$, was synthesized by layered-solution technique and structurally characterized by single-crystal X-ray. The copper atom has a square pyramidal geometry and the coordination number is five. The molecular structure is linear one-dimensional network. There is a stacking effect between pyridine ligands of neighbouring 1-D chains and the molecular structure is extended into two-dimensional stacking network. Two salicylates in the complex have a position of crab pincers-like, in which one salicylate is unidentate and another coordinates through the carboxylate group and phenyl group unidentately.

Keywords: pyridine salicylic acid crystal structure stacking effect of aromatic ring network