Vol. 18, No. 9 Sep.,2002

研究简报

异亚硝基乙酰乙酸乙酯亚胺 Pd(II)配合物的合成、表征 和 $tran Pd(p-CH_3C_6H_4-IEAI)_2$ 的晶体结构

冯云龙*,1.2 刘世雄²
(¹浙江师范大学物理化学研究所,金华 321004)
(²福州大学中心实验室,福州 350002)

关键词:	Pd (II)配合物	异亚硝基乙酰乙酸乙酯	Schiff 碱	晶体结构
分类号:	0614.82*3			

二齿异亚硝基 - β -酮胺配体,由于异亚硝基(肟基)配位功能引起人们的兴趣。在已知的这类配体的金属配合物中,肟基可通过 N 原子或/和 O 原子与金属原子配位形成各种键合异构体^[1-4]。我们已报道了异亚硝基乙酰丙酮(isonitrosoacetylacetone,简写成 HIAA)亚胺 R-HIAI^[4]和异亚硝基乙酰乙酸乙酯(isonitrosoethylacetoacetate,简写成 HIEAA)亚胺 R-HIEAI^[5,6]为配体的两种不同结构类型 Pd (ID配合物。在这些配合物中肟基以 N 原子与金属配位。McConnel等^[7]报道了 Ni(CH₃-IAI)(IAI)配合物,在该配合物中,配体 CH₃-IAI⁻的肟基通过 N 原子,而配体 IAI⁻则通过 O 原子与 Ni (II)配位。本文报道六个异亚硝基乙酰乙酸乙酯亚胺 Schiff 碱配体 R-HIEAI 的 Pd (II)配合物合成、表征和配合物 tran Pd(p-CH₃C₆H₄-IEAI)₂的晶体结构。

1 实验部分

1.1 仪器和试剂

配合物的 C、H、N 在 EA 1110 CHNS 元素分析 仪上完成。红外光谱在 Perkin-Elmer FT-IR200 付立 叶变换红外光谱仪上测定。拉曼光谱在 Nicolet Raman 910 付立叶变换拉曼光谱仪上测定。电子光 谱在 Perkin-Elmer 9入紫外 - 可见 - 近红外光谱仪上 测定。衍射实验在 Rigaku ACF5R 四圆衍射仪上完 成。 试剂均为市售分析纯或化学纯试剂,未作进一 步处理。

1.2 配合物的合成

HIEAA 按文献^[8]方法合成, Pd(IEAA) 2 按文 献^[9]方法合成。

1.2.1 cis Pd(p-CH₃C₆H₄-IEAI)₂(1)和 tran Pd(p-CH₃C₆H₄-IEAI)₂(2)的合成

将 0.5mmol 的 Pd(IEAA) 2 溶于 15mL MeOH 中,加 1.0mmol 对甲苯胺,回流 1h,冷却,过滤。滤液 缓慢挥发得到橘黄色晶体 cis Pd(p-CH₃C₆H₄-IEAI)₂ (1)^[10]。产率 61%。元素分析: C₂₆H₃₀N₄O₆Pd,实验值 (计算值,%) C 51.42(51.96), H 4.86(5.03), N 8.88(9.33)。将配合物 1 用 CHCl₃ 重结晶,得到橘红 色晶体 tran Pd(p-CH₃C₆H₄-IEAI)₂(2)。

1.2.2 Pd(C₆H₅-IEAI)₂(3)的合成

用苯胺代替对甲苯胺,采用合成配合物 2 相同的方法,得到橘红色配合物 Pd(C₆H₅-IEAI)₂(3)。产率 50%。元素分析: C₂₄H₂₆N₄O₆Pd,C 50.89(50.31), H 4.86(4.57),N 8.97(9.38)。

1.2.3 cis $Pd(C_6H_5CH_2-IEAI)_2(4)$ π tran $Pd(C_6H_5CH_2-IEAI)_2(5)$

将 1.0mmol 的 HIEAA 溶于 10mL MeOH 中,加 1.0mmol 苄胺,回流 0.5h。加 0.5mmol 固体 PdCl₂, 然后用 1mol・L⁻¹ 的 NaOH 水溶液调节溶液 pH = 7.5,室温搅拌 4h,析出橘黄色沉淀,过滤,干燥,得

收稿日期:2002-04-02。收修改稿日期:2002-05-29。

^{*}通讯联系人。E-mail: jhfyl@ mail. jhptt. zj. cn

第一作者:冯云龙,男,42岁,博士,副教授;研究方向:功能配合物与结构化学。

· 930 ·

第18卷

*	1	十 两位从和长 用 *********	
衣.	1	土安红外和拉安诺带及具归属	

Table 1 Vibration Frequencies(cm⁻¹) and Assignments in the IR and Raman Spectra

1	1	2		3		4		5				
IR	Raman	IR	Raman	IR	Raman	IR	Raman	IR	Raman	IR	Raman	assignment
1733vs	1729w	1731vs	1727m	1691vs	1691s	1722vs	1722m	1723vs	1724m	1716vs		$\nu_{C=0}$
1563m	1560vs	1563m	1562m		1548vs	1572m	1569s	1572m	1569s	1564m	1579m	$\nu_{\rm C} = NO$
1212vs	1211m	1213vs	1210m	1209s	1212m	1209vs	1199s	1210vs	1199m	1211vs		ν"c.o.c
1013vs	1012w	1014m	1011m	1015m	1012w	1014m	1030w	1015m	1029m	1015m	1023w	ν*c.o.c
1087s	1089w	1087s	1090m	1086s	1089m	1123s		1124s	1124m	1088s	1090w	<i>v</i> N-0
629w	626w	629w	626w	630w	634m	621w	616m	622w	588m	682w	537w	VPd-N
	<u>5</u> 43m		544m	535m	628m	594w	589m	596m	516m	545m		

cis Pd(C₆H₅CH₂-IEAI) 2(4)。产率 56%。元素分析: C₂₆H₃₀N₄O₆Pd, C 51.31(51.96), H 4.72(5.03), N 8.81(9.33)。

将配合物 4 用 CHCl₃ 重结晶,得到橘红色晶体 *tran* Pd(C₆H₅CH₂-IEAI)₂(5)。

1.2.4 Pd(o-BrC₆H₄-IEAI)₂(6)的合成

用邻溴苯胺代替对甲苯胺,采用合成配合物 2相同的方法,得到红色固体 Pd(*o*-BrC₆H₄-IEAI)₂ (6)。产率 50%。元素分析: C₂₄H₂₄Br₂N₄O₆Pd,C 51.35(51.96),H4.74(5.03),N8.90(9.33)。

1.3 晶体结构测定

选择大小为 0. 50mm × 0. 40mm × 0. 40mm 橘红 色配合物 2 单晶, 在带有石墨单色器的 Rigaku AFC5R 四圆衍射仪上进行衍射实验。用辐射 Mo K α (λ = 0. 071069nm), 2 θ - ω 方式扫描共收集到 5351 个衍射点,独立衍射点 2620 个,其中 2077 个 $I \ge$ 2 $\sigma(I)$ 的可观测点用于结构修正,全部数据经 Lp 因 子和 Ψ 吸收校正。结构分析表明晶体 2 属单斜晶 系,空间群为 $P2_1/c$,晶胞参数: a = 1.2002(2), b =0.9972(2), c = 1.1121(2) nm, $\beta = 90.43(3)^\circ$, Z = 2, $F(000) = 616, \mu = 7.44 \text{ cm}^{-1}$ 。

晶体结构用直接法解出, 氢原子由理论计算得 到。使用全矩阵最小二乘法对非氢原子坐标进行各 向异性温度因子修正, 对氢原子进行各向同性温度 进行修正。最终偏差因子 R = 0.0244, wR = 0.0625, 其中 $w = 1/[\sigma^2(F_0^2) + (0.0236P)^2 + 0.7740P]$, $P = (F_0^2 + 2F_c^2)/3$, S = 1.150, $(\Delta/\sigma)_{max} = 0.001$, $(\Delta/\rho)_{max} = 279e \cdot nm^{-3}$, $(\Delta/\rho)_{min} = -474e \cdot nm^{-3}$ 。晶体结构分析工作在 PC 计算机上用 SHELXL 97 程序^[11]进行。

CCDC: 183367°

2 结构与讨论

2.1 红外光谱

配合物的主要红外谱带及其归属列于表 1。这 些配合物都是异亚硝基乙酰乙酸乙酯亚胺的 Pd (II) 配合物,由于 -OC₂H₅的诱导效应 (-I)大于 -CH₃, 因此羰基 C=O的伸缩振动频率高于配合物 Pd(R-IAI)₂系列^[8,12]中对应的频率,但是它们仍然 低于正常酯的羰基伸缩振动频率。同时, $\nu_{C=0}$ 还受 到缩合亚胺基 R 的影响。N-O的伸缩振动频率均在 1085cm⁻¹以上,呈现出较大的双键性,并表明肟基 以 N 原子与 Pd 配位^[13]。配合物 1^[10]和 2 的光谱基本 相同,由经 X- 衍射分析它们属于顺反异构体。配合 物 4 和 5 的光谱亦基本相同,参照 1 和 2 的分析,并 结合配合物的颜色推测^[3],4 和 5 也属于顺反异构 体。

2.2 电子光谱

用 CHCl₃ 和 CH₃OH 为溶剂分别测定了配合物 的电子光谱,并用纯溶剂进行了背景校正。配合物的 电子光谱及其归属列于表 2。这些配合物均出现了 配体 L 的 *π ~ π*[•]跃迁和金属到配体的荷移跃迁 (MLCT)。钯原子内的 *d ~ d*[•]跃迁可能被荷移跃迁

表 2 电子光谱数据及其归属

Table 2Electronic Spectroscopic Data(λ_{max} , nm) and
Assignments for the Complexes

	in	CHCl,	in MeOH			
complex -	L	MLCT	L	MLCT		
1	270	310, 423	270	296, 339, 401		
2	271	343, 427	267	335, 395		
3	269	344, 430	*	*		
4	260	307, 424	252	281, 357		
5	263	306, 422	251	281,356		
6	265	345, 431	269	340, 421		

sparingly soluble

冯云龙等:异亚硝基乙酰乙酸乙酯亚胺 Pd (II)配合物的合成、表征 和 tran Pd(p-CH₃C₆H₄-IEAI)₂ 的晶体结构

表 3 配合物 2 主要的键长和键角

· 931 ·

Table 3 Selected Bond Distances(nm) and Angles(°) for Complexes 2								
Pd(1)-N(1)	0.2028(2)	Pd(1)-N(2)	0.2044(2)	O(1)-C(1)	0.1315(3)	O(1)-C(5)	0.1463(3)	
O(2)-C(1)	0.1197(3)	O(3)-N(1)	0.1261(3)	N(1)-C(2)	0.1320(3)	N(2)-C(3)	0.1298(3)	
N(2)-C(7)	0.1441(3)	C(1)-C(2)	0.1499(3)	C(2)-C(3)	0.1435(3)	C(3)-C(4)	0.1494(4)	
N(1)-Pd(1)-N(2)	79.18(8)	C(1)-O(1)-C(5)	117.8(2)	O(3)-N(1)-C(2)	120.7(2)	O(3)-N(1)-Pd(1)	125.2(2)	
C(2)-N(1)-Pd(1)	114.1(2)	C(3)-N(2)-C(7)	121.2(2)	C(3)-N(2)-Pd(1)	114.2(2)	C(7)-N(2)-Pd(1)	124.7(2)	
O(2)-C(1)-O(1)	124.7(2)	O(2)-C(1)-C(2)	124.7(3)	O(1)-C(1)-C(2)	110.6(2)	N(1)-C(2)-C(3)	116.1(2)	
N(1)-C(2)-C(1)	119.1(2)	C(3)-C(2)-C(1)	124.8(2)	N(2)-C(3)-C(2)	116.5(2)	N(2)-C(3)-C(4)	124.3(2)	
C(2)-C(3)-C(4)	119.2(2)							

掩盖^[2]。溶剂的不同可使配合物的电子光谱吸收峰的位置和强度发生改变,同时还引起某些吸收峰的出现或消失。相对于 CHCl₃ 为溶剂,以 CH₃OH 为溶剂测定的相应的荷移谱带有不同程度的蓝移。

2.3 晶体结构描述

配合物2主要的键长和键角列于表3中。

配合物 2 分子存在对称中心, Pd (II)位于对称中 心(0.5,0,0.5)上。图 1 为该配合物的 ORTEP 图,标 有 'a'的原子与相应的原子中心对称相关 [symmetry code: (a)1 – x, – y, 1 – z]。两个配体的肟基 N 原子 和亚胺基的 N 原子与 Pd(1) 配位,形成反式的 PdN₄ 配位结构。Pd(1)-N(1)(肟)和 Pd(1)-N(2)(亚胺)的 键长分别为 0. 2028(2) 和 0. 2044(2) nm,比配合物 PdCl(C₆H₅-IAI)₂(C₆H₅NH₂)^[4]中对应的键长 [0. 1982 (4)和 0. 2022(4)nm]长,但比配合物 Pd(p-CH₃C₆H₄-IBI)₂^[14]中对应的键长 [0. 2048(4) 和 0. 2055(5) nm] 短。这是由于基团 -CH₃, -OC₂H₅, -C₆H₅ 的电负性依次 减小、对肟基的极化作用依次增强,肟基的 N 原子

图 1 tran Pd(p-CH₃C₆H₄-IEAI)₂的分子结构 Fig. 1 Structure of tran Pd(p-CH₃C₆H₄-IEAI)₂

配位能力依次增强。

螯合五元环[Pd(1)、N(1)、C(2)、C(3)和N(2)] 共面,环上原子的平均偏差为0.0006nm,此平面与 苯环C原子[C(7)、C(8)、C(9)、C(10)、C(11)和C (12)]组成的平面近似垂直,两平面的二面角为 84.09(9)°。N(1)、C(2)、C(3)和N(2)四原子有共轭 作用,它们的键长平均化。N(1)=C(2)和N(2)=C (3)位于同一平面上,N(1)-C(2)-C(3)-N(2)的扭角 1.2(4)°,C(2)-C(3)的键长为0.1435(3)nm。肟基N (1)-O(3)的键长为0.1261(3)nm,因而具有较大的 双键性,按Bernstein方程^{115,16]}计算,N-O的键级为 1.85。

参考文献

- [1] Chakravorty A. Coord. Chem. Rev., 1974, 13, 1.
- [2] Dixit N. S., Patel C. C. J. Indian Chem. Soc., 1977, 54, 176.
- [3] Aly M. M. Transition Met. Chem., 1990, 15, 99.
- [4] FENG Yun-Long(冯云龙), LIU Shi-Xiong(刘世雄) Gaodeng Xuexiao Huaxue Xuebao(Chem. J. Chinese Universities), 2000, 21, 1455.
- [5] XIAO Guang-Can(肖光参), FENG Yun-Long(冯云龙), LIU Shi-Xiong(刘世雄) Jiegou Huaxue(Chinese J. Struct. Chem.), 2000, 19, 177.
- [6] FENG Yun-Long(冯云龙), LIU Shi-Xiong(刘世雄) Huaxue Xuebao(Acta Chimica Sinica), 2002, 60, 947.
- [7] McConnell J. F., Lacey M. J., Macdonald C. G., Shannon J. S. Acta Cryst., 1973, B29, 2477.
- [8] Touster O. Organic Reactions, Vol. 7, Ed by Adams R., Cope A. C., Mcgrew F. C., New York, 1953, p353.
- [9] White D. A. J. Chem. Soc. (A), 1971, 233.
- [10] cis Pd(p-CH₃C₆H₄-IEAI)₂ (1) crystallized in the triclinic system, space group $P\overline{1}$, with a = 0.8582(2), b =

第18卷

· 932 ·

- Lett., 1977, 13, 305.
- 76.81(3), $\gamma = 84.02(3)^{\circ}$, Z = 2, F(000) = 616. The structure was solved by the direct methods, but refinement failed.

1. 2554(2), c = 1.3530(3) nm, $\alpha = 72.49(3)$, $\beta =$

- [11]Sheldrick G. M. SHELXL97, Program for the Refinement of Crystal Structures, University of Gottingten, Germany, 1997.
- [12] Dixit N. S., Manohar H., Patel C. C. Inorg. Nucl. Chem.
- [13] Bose K. S., Sharma B. B., Patel C. C. Inorg. Chem., 1973, 12, 120.
- [14]FENG Yun-Long(冯云龙) Ph. D. Dissertation of Fuzhou University(福州大学博士论文), 1999.
- [15] Bernstein H. J. J. Chem. Phys., 1947, 15, 284.
- [16]Bruckner S., Randaccio L. J. Chem. Soc. Dalton Trans., 1974, 1017.

Syntheses, Spectral Properties of Palladium (II) Complexes with Isonitrosoethylacetoacetate Imine Ligands, and Crystal Structure of *tran* Pd(*p*-CH₃C₆H₄-IEAI)₂

FENG Yun-Long^{*,1,2} LIU Shi-Xiong²

('Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004) (² Laboratory Center, Fuzhou University, Fujian 350002)

Six palladium (II) complexes with isonitrosoethylacetoacetate imine Schiff base ligands, Pd(R-IEAI)₂, were prepared and characterized by IR, Raman and electronic spectra. Complex tran Pd(p-CH₃C₆H₄-IEAI)₂ (2) crystallizes in the monoclinic system, space group $P2_1/c$, with a = 1.2002(2), b = 0.9972(2), c = 1.1121(2) nm, $\beta = 90.43(3)^\circ$, Z = 2, F(000) = 616, $\mu = 7.44$ cm⁻¹. The final R and w R are 0.0244 and 0.0625 for 2620 observed reflections with $I \ge 2\sigma(I)$, respectively. The geometry around the Pd (II) ions in those complexes has a distorted PdN₄ square plane, the Schiff base ligands R-IEAI⁻ being coordinated through their oximino-nitrogen atoms and imino-nitrogen atoms.

Keywords: palladium (II) complex isonitrosoethylacetoacetate imine Schiff base crystal structure