Vol. 18, No. 9 Sep., 2002

研究简报

异亚硝基乙酰乙酸乙酯亚胺 Pd(II)配合物的合成、表征和 $tran Pd(p-CH_3C_6H_4-IEAI)_2$ 的晶体结构

冯云龙*·1.2 刘世雄² (¹ 浙江师范大学物理化学研究所,金华 321004) (² 福州大学中心实验室,福州 350002)

关键词:

Pd (II)配合物

异亚硝基乙酰乙酸乙酯

Schiff 碱

晶体结构

分类号:

0614.82+3

二齿异亚硝基 - β - 酮胺配体,由于异亚硝基(肟基)配位功能引起人们的兴趣。在已知的这类配体的金属配合物中,肟基可通过 N 原子或/和 O 原子与金属原子配位形成各种键合异构体 [1-4]。我们已报道了异亚硝基乙酰丙酮 (isonitrosoacetylacetone,简写成 HIAA) 亚胺 R-HIAI [4] 和异亚硝基乙酰乙酸乙酯 (isonitrosoethylacetoacetate,简写成 HIEAA) 亚胺 R-HIEAI [5.6] 为配体的两种不同结构类型 Pd (II)配合物。在这些配合物中肟基以 N 原子与金属配位。McConnel 等 [7] 报道了 Ni (CH₃-IAI) (IAI)配合物,在该配合物中,配体 CH₃-IAI 的肟基通过 N 原子,而配体 IAI [4] 则通过 O 原子与 Ni (II)配位。本文报道六个异亚硝基乙酰乙酸乙酯亚胺 Schiff 碱配体 R-HIEAI 的 Pd (II)配合物合成、表征和配合物 tran Pd (β -CH₃C₆H₄-IEAI)₂ 的晶体结构。

1 实验部分

1.1 仪器和试剂

配合物的 C、H、N 在 EA 1110 CHNS 元素分析仪上完成。红外光谱在 Perkin-Elmer FT-IR200 付立叶变换红外光谱仪上测定。拉曼光谱在 Nicolet Raman 910 付立叶变换拉曼光谱仪上测定。电子光谱在 Perkin-Elmer 9 λ 紫外 - 可见 - 近红外光谱仪上测定。衍射实验在 Rigaku ACF5R 四圆衍射仪上完成。

试剂均为市售分析纯或化学纯试剂,未作进一 步处理。

1.2 配合物的合成

HIEAA 按文献^[8]方法合成, Pd(IEAA)₂ 按文献^[9]方法合成。

1.2.1 cis Pd(p-CH₃C₆H₄-IEAI)₂(1)和 tran Pd(p-CH₃C₆H₄-IEAI)₂(2)的合成

将 0.5 mmol 的 Pd(IEAA) $_2$ 溶于 15 mL MeOH中,加 1.0 mmol 对甲苯胺,回流 1h,冷却,过滤。滤液缓慢挥发得到橘黄色晶体 cis Pd(p-CH $_3$ C $_6$ H $_4$ -IEAI) $_2$ (1) $_1^{[10]}$ 。产率 61%。元素分析: C $_2$ 6H $_3$ 0N $_4$ O $_6$ Pd,实验值(计算值,%) C 51.42(51.96),H 4.86(5.03),N 8.88(9.33)。将配合物 1 用 CHCl $_3$ 重结晶,得到橘红色晶体 tran Pd(p-CH $_3$ C $_6$ H $_4$ -IEAI) $_2$ (2)。

1.2.2 Pd(C₆H₅-IEAI)₂(3)的合成

用苯胺代替对甲苯胺,采用合成配合物 2 相同的方法,得到橘红色配合物 $Pd(C_6H_5-IEAI)_2(3)$ 。产率 50%。元素分析: $C_{24}H_{26}N_4O_6Pd$, C 50.89(50.31), H 4.86(4.57), N 8.97(9.38)。

1.2.3 cis Pd(C₆H₅CH₂-IEAI)₂(**4**)和 tran Pd(C₆H₅CH₂-IEAI)₂(**5**)

将 1.0 mmol 的 HIEAA 溶于 10 mL MeOH 中,加 1.0 mmol 苄胺,回流 0.5 h。加 0.5 mmol 固体 $PdCl_2$,然后用 1 mol·L⁻¹ 的 NaOH 水溶液调节溶液 pH=7.5,室温搅拌 4h,析出橘黄色沉淀,过滤,干燥,得

收稿日期:2002-04-02。收修改稿日期:2002-05-29。

[★]通讯联系人。E-mail: jhfyl@ mail. jhptt. zj. cn

第一作者:冯云龙,男,42岁,博士,副教授;研究方向:功能配合物与结构化学。

维普资讯 http://www.cqvip.com

Table 1 Vibration Frequencies (cm⁻¹) and Assignments in the IR and Raman Spectra

1		2		3		4		5		6		
IR	Raman	<u>IR</u>	Raman	IR	Raman	IR	Raman	IR	Raman	IR	Raman	assignment
1733vs	1729w	1731vs	1727m	1691vs	1691s	1722vs	1722m	1723vs	1724m	1716vs		ν _{C ± 0}
1563m	1560vs	1563m	1562m		1548vs	1572m	1569s	1572m	1569s	1564m	1579m	ν _{C = NO}
1212vs	1211m	1213vs	1210m	1209s	1212m	1209vs	1199s	1210vs	1199m	1211vs		ν ^{**} c-o-c
1013vs	1012w	1014m	1011m	1015m	1012w	1014m	1030w	1015m	1029m	1015m	1023w	$ u^{s}_{\text{C-O-C}}$
1087s	1089w	1087s	1090m	1086s	1089m	1123s		1124s	1124m	1088s	1090w	$\nu_{ ext{N-O}}$
629w	626w	629w	626w	630w	634m	621w	616m	622w	588m	682w	537w	$ u_{\mathrm{Pd-N}}$
	543m		544m	535m	628m	594w	589m	596m	516m	545m		

cis Pd(C₆H₅CH₂-IEAI) ₂(4)。产率 56%。元素分析: C₂₆H₃₀N₄O₆Pd, C 51. 31(51. 96), H 4. 72(5. 03), N 8. 81(9. 33)。

将配合物 4 用 CHCl₃ 重结晶, 得到橘红色晶体 tran Pd(C₆H₅CH₂-IEAI)₂(5)。

1. 2. 4 Pd(o-BrC₆H₄-IEAI)₂(**6**)的合成

用邻溴苯胺代替对甲苯胺,采用合成配合物 2 相同的方法,得到红色固体 $Pd(o-BrC_6H_4-IEAI)_2$ (6)。产率 50%。元素分析: $C_{24}H_{24}Br_2N_4O_6Pd$, C 51. 35(51. 96), H 4. 74(5. 03), N 8. 90(9. 33)。

1.3 晶体结构测定

选择大小为 0. $50 \text{mm} \times 0.40 \text{mm} \times 0.40 \text{mm}$ 橘红色配合物 2 单晶,在带有石墨单色器的 Rigaku AFC5R 四圆衍射仪上进行衍射实验。用辐射 Mo $K\alpha$ (λ =0.071069nm), 2θ - ω 方式扫描共收集到 5351个衍射点,独立衍射点 2620个,其中 2077个 $I \ge 2\sigma(I)$ 的可观测点用于结构修正,全部数据经 Lp 因子和 Ψ 吸收校正。结构分析表明晶体 2 属单斜晶系,空间群为 $P2_1/c$,晶胞参数:a=1.2002(2),b=0.9972(2),c=1.1121(2) nm, $\beta=90.43(3)$ °,Z=2,F(000)=616, $\mu=7.44$ cm⁻¹。

晶体结构用直接法解出,氢原子由理论计算得到。使用全矩阵最小二乘法对非氢原子坐标进行各向异性温度因子修正,对氢原子进行各向同性温度进行修正。最终偏差因子 R=0.0244, w R=0.0625, 其中 $w=1/[\sigma^2(F_0^2)+(0.0236P)^2+0.7740P]$, $P=(F_0^2+2F_c^2)/3$, S=1.150, $(\Delta/\sigma)_{max}=0.001$, $(\Delta/\rho)_{max}=279e\cdot nm^{-3}$, $(\Delta/\rho)_{min}=-474e\cdot nm^{-3}$ 。晶体结构分析工作在 PC 计算机上用 SHELXL 97 程序[11]进行。

CCDC: 183367°

2 结构与讨论

2.1 红外光谱

配合物的主要红外谱带及其归属列于表 1。这些配合物都是异亚硝基乙酰乙酸乙酯亚胺的 Pd(II) 配合物,由于 $-OC_2H_5$ 的诱导效应 (-I) 大于 $-CH_3$,因此羰基 C=O 的伸缩振动频率,但是它们仍然低于正常酯的羰基伸缩振动频率。同时, $\nu_{C=0}$ 还受到缩合亚胺基 R 的影响。N-O 的伸缩振动频率均在 1085cm $^{-1}$ 以上,呈现出较大的双键性,并表明肟基以 N 原子与 Pd 配位 $^{[13]}$ 。配合物 $1^{[10]}$ 和 2 的光谱基本相同,由经 X- 衍射分析它们属于顺反异构体。配合物 4 和 5 的光谱亦基本相同,参照 1 和 2 的分析,并结合配合物的颜色推测 $^{[3]}$,4 和 5 也属于顺反异构体。

2.2 电子光谱

用 CHCl₃ 和 CH₃OH 为溶剂分别测定了配合物的电子光谱,并用纯溶剂进行了背景校正。配合物的电子光谱及其归属列于表 2。这些配合物均出现了配体 L 的 $\pi \sim \pi^*$ 跃迁和金属到配体的荷移跃迁(MLCT)。钯原子内的 $d \sim d^*$ 跃迁可能被荷移跃迁

表 2 电子光谱数据及其归属

Table 2 Electronic Spectroscopic Data (λ_{max} , nm) and Assignments for the Complexes

	in	CHCl ₃	in MeOH			
complex -	L	MLCT	L	MLCT		
1	270	310, 423	270	296, 339, 401		
2	271	343, 427	267	335, 395		
3	269	344, 430	*	*		
4	260	307, 424	252	281,357		
5	263	306, 422	251	281, 356		
6	265	345, 431	269	340, 421		

^{*} sparingly soluble

表 3 配合物 2 主要的键长和键角

Table 3	Selected Bond	Distances (nm)	and Angles (°)	for Complexes 2
	Colocted Dolla	Distances (MIII)	and wherest	TOT COMBURES 2

				-	-		
Pd(1)-N(1)	0.2028(2)	Pd(1)-N(2)	0.2044(2)	O(1)-C(1)	0.1315(3)	O(1)-C(5)	0.1463(3)
O(2)-C(1)	0.1197(3)	O(3)-N(1)	0.1261(3)	N(1)-C(2)	0.1320(3)	N(2)-C(3)	0. 1298(3)
N(2)-C(7)	0.1441(3)	C(1)-C(2)	0.1499(3)	C(2)-C(3)	0. 1435(3)	C(3)-C(4)	0. 1494(4)
N(1)-Pd(1)-N(2)	79. 18(8)	C(1)-O(1)-C(5)	117.8(2)	O(3)-N(1)-C(2)	120.7(2)	O(3)-N(1)-Pd(1)	125. 2(2)
C(2)-N(1)-Pd(1)	114.1(2)	C(3)-N(2)-C(7)	121.2(2)	C(3)-N(2)-Pd(1)	114.2(2)	C(7)-N(2)-Pd(1)	124. 7(2)
O(2)-C(1)-O(1)	124.7(2)	O(2)-C(1)-C(2)	124.7(3)	O(1)-C(1)-C(2)	110.6(2)	N(1)-C(2)-C(3)	116.1(2)
N(1)-C(2)-C(1)	119.1(2)	C(3)-C(2)-C(1)	124.8(2)	N(2)-C(3)-C(2)	116.5(2)	N(2)-C(3)-C(4)	124. 3(2)
C(2)-C(3)-C(4)	119.2(2)						

掩盖^[2]。溶剂的不同可使配合物的电子光谱吸收峰的位置和强度发生改变,同时还引起某些吸收峰的出现或消失。 相对于 CHCl₃ 为溶剂,以 CH₃OH 为溶剂测定的相应的荷移谱带有不同程度的蓝移。

2.3 晶体结构描述

配合物 2 主要的键长和键角列于表 3 中。

配合物 2 分子存在对称中心,Pd (II)位于对称中心 (0.5,0,0.5) 上。图 1 为该配合物的 ORTEP 图,标有 'a'的原子与相应的原子中心对称相关 [symmetry code: (a)1-x,-y,1-z]。两个配体的肟基 N 原子和亚胺基的 N 原子与 Pd (1) 配位,形成反式的 Pd (1) 配位结构。Pd (1) -N (1) (肟)和 Pd (1) -N (2) (亚胺)的键长分别为 (1) 0. (2) 2028 (2) 和 (2) 0. (2) 2044 (2) nm,比配合物 Pd (2) 2022 (2) 2044 (2) 2044 (2) 2048 (2) 2049

图 1 tran Pd(p-CH₃C₆H₄-IEAI)₂ 的分子结构 Fig. 1 Structure of tran Pd(p-CH₃C₆H₄-IEAI)₂

配位能力依次增强。

螯合五元环[Pd(1),N(1),C(2),C(3)和 N(2)]共面,环上原子的平均偏差为 0.0006nm,此平面与 苯环 C 原子[C(7),C(8),C(9),C(10),C(11) 和 C(12)] 组成的平面近似垂直,两平面的二面角为 84.09(9)°。N(1),C(2),C(3)和 N(2)四原子有共轭作用,它们的键长平均化。N(1)=C(2) 和 N(2)=C(3) 位于同一平面上,N(1)-C(2)-C(3)-N(2) 的扭角 1.2(4)°,C(2)-C(3) 的键长为 0.1435(3) nm。肟基 N(1)-O(3) 的键长为 0.1261(3) nm,因而具有较大的双键性,按 Bernstein 方程[15.16]计算,N-O 的键级为 1.85。

参 考 文 献

- [1] Chakravorty A. Coord. Chem. Rev., 1974, 13, 1.
- [2] Dixit N. S., Patel C. C. J. Indian Chem. Soc., 1977, 54, 176.
- [3] Aly M. M. Transition Met. Chem., 1990, 15, 99.
- [4] FENG Yun-Long(冯云龙), LIU Shi-Xiong(刘世雄) Gaodeng Xuexiao Huaxue Xuebao (Chem. J. Chinese Universities), 2000, 21, 1455.
- [5] XIAO Guang-Can(肖光参), FENG Yun-Long(冯云龙), LIU Shi-Xiong(刘世雄) Jiegou Huaxue(Chinese J. Struct. Chem.), 2000, 19, 177.
- [6] FENG Yun-Long(冯云龙), LIU Shi-Xiong(刘世雄) Huaxue Xuebao (Acta Chimica Sinica), 2002, 60, 947.
- [7] McConnell J. F., Lacey M. J., Macdonald C. G., Shannon J. S. Acta Cryst., 1973, B29, 2477.
- [8] Touster O. Organic Reactions, Vol. 7, Ed by Adams R., Cope A. C., Mcgrew F. C., New York, 1953, p353.
- [9] White D. A. J. Chem. Soc. (A), 1971, 233.
- [10] cis Pd(p-CH₃C₆H₄-IEAI)₂ (1) crystallized in the triclinic system, space group $P\overline{1}$, with a = 0.8582(2), b =

- 1. 2554(2), $c = 1.3530(3) \, \text{nm}$, $\alpha = 72.49(3)$, $\beta = 76.81(3)$, $\gamma = 84.02(3)^{\circ}$, Z = 2, F(000) = 616. The structure was solved by the direct methods, but refinement failed.
- [11] Sheldrick G. M. SHELXL97, Program for the Refinement of Crystal Structures, University of Gottington, Germany, 1997.
- [12] Dixit N. S., Manohar H., Patel C. C. Inorg. Nucl. Chem.

Lett., 1977, 13, 305.

- [13] Bose K. S., Sharma B. B., Patel C. C. Inorg. Chem., 1973, 12, 120.
- [14] FENG Yun-Long(冯云龙) Ph. D. Dissertation of Fuzhou University(福州大学博士论文), 1999.
- [15] Bernstein H. J. J. Chem. Phys., 1947, 15, 284.
- [16] Bruckner S., Randaccio L. J. Chem. Soc. Dalton Trans., 1974, 1017.

Syntheses, Spectral Properties of Palladium (II) Complexes with Isonitrosoethylacetoacetate Imine Ligands, and Crystal Structure of tran Pd(p-CH₃C₆H₄-IEAI)₂

FENG Yun-Long*.1.2 LIU Shi-Xiong²
(¹ Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004)
(² Laboratory Center, Fuzhou University, Fujian 350002)

Six palladium (II) complexes with isonitrosoethylacetoacetate imine Schiff base ligands, Pd(R-IEAI)₂, were prepared and characterized by IR, Raman and electronic spectra. Complex tran Pd(p-CH₃C₆H₄-IEAI)₂ (2) crystallizes in the monoclinic system, space group $P2_1/c$, with a=1.2002(2), b=0.9972(2), c=1.1121(2) nm, $\beta=90.43(3)^\circ$, Z=2, F(000)=616, $\mu=7.44$ cm⁻¹. The final R and w R are 0.0244 and 0.0625 for 2620 observed reflections with $I \geq 2\sigma(I)$, respectively. The geometry around the Pd (II) ions in those complexes has a distorted PdN₄ square plane, the Schiff base ligands R-IEAI being coordinated through their oximino-nitrogen atoms and imino-nitrogen atoms.

Keywords: palladium (II) complex isonitrosoethylacetoacetate imine Schiff base crystal structure