Vol. 18, No. 10 Oct.,2002

表面修饰纳米 CdS 制备中两个重要影响因素及结构表征

曹维良 张凯华 张敬畅* (北京化工大学理学院,北京 100029)

利用溶胶-凝胶法制备了 PVP 表面修饰的 CdS 纳米晶粒。考察了影响纳米 CdS 制备的两个重要因素 Cd²⁺/S²⁻和 PVP,及 其作用机理。确证表面过剩 S²⁻和 PVP 在反应体系中的作用是在较高浓度下制备纳米CdS 的两个重要因素,进一步确定了 PVP 的最佳用量。通过 TEM、ED、XRD、FT-IR 等手段对合成的纳米粒子进行了结构表征,最小粒径为 7~10nm,闪锌矿构型,粒子大 小及形貌可通过改变 Cd²⁺/S²⁻及反应物浓度来控制。最后给出了 CdS/PVP 纳米晶粒的结构模型。

关键词:	纳米 CdS	Cd ² + / S ² -	PVP
分类号:	0614.24*2	0613.51	

纳米 CdS 作为一种典型的光电半导体材料,在 光吸收、光致发光、光电转换、非线性光学、光催化和 传感器等方面都有极好的应用前景,寻找一种工艺 简单、成熟的方法合成性能优异、可控的 CdS 纳米 材料,具有十分重要的意义。

目前,相关研究主要集中在开发合成 CdS 纳米 颗粒的新技术(如胶体化学法、反向胶束法、LB 膜法 等),研究 CdS 纳米材料在光、电方面的性能,以及 利用各种方法对 CdS 纳米颗粒表面进行修饰等。在 CdS 的合成方面,多数方法选用的 Cd²⁺、S²⁻的浓度 均为 0.001mol·L^{-1[1,2]}。本文在将 Cd²⁺、S²⁻的浓度 提高近 100 倍(0.1mol·L⁻¹)的情况下,仍然制备出 纳米级的 CdS,主要归因于表面过剩 S²⁻及 PVP 在 反应体系中的作用。本文深入考察了这两个影响因 素及其作用机理,并对合成的 CdS 纳米粒子进行了 表征。本文提出的合成工艺简单,为以后 CdS 的批 量生产及应用提供了可行性实例。

1 实验部分

1.1 药品

硝酸镉 Cd(NO₃)₂ · 4H₂O(A. R.), 硫化钠 Na₂S · 9H₂O(A. R.), PVP(聚乙烯基吡咯烷酮 K30, 化学 纯), 硫酸锌 ZnSO₄ · 7H₂O(A. R.), 稀 HNO₃。

1.2 实验

在高速搅拌下,向 Cd(NO₃)₂ · 4H₂O 溶液中加 人 10% 的 PVP,调节 pH 至 2.5,置于冰水浴中 30min。同时另取 Na₂S · 9H₂O 溶液置于冰水浴中 30min,然后倾入上述的 Cd(NO₃)₂ 溶液中,继续搅拌 30min,即得产物 CdS。向其中加入适量的 ZnSO₄ · 7H₂O 溶液作为絮凝剂,搅拌 15min,静置使其絮沉, 离心过滤,用去离子水洗三次,自然干燥,得橘黄色 干粉末样品。

表1是5组样品的制备条件,前3组样品Cd²⁺、 S²⁻离子溶液浓度均为0.1mol·L⁻¹,但Cd²⁺/S²⁻不

表 1 样品的配备 Table 1 Preparations of the Samples

sample	Cd ²⁺ concentration	dosage of Cd ²⁺ /mL	S ² - concentration	dosage of S ²⁻ /mL	Cd ²⁺ /S ²⁻	dosage of PVP/mL
A	0. 1mol · L ⁻¹	10	0. 1mol · L-1	10	1	23. 74
В	0.1mol·L ⁻¹	10	0.1mol · L-1	7.66	10: 7.66	23.74
С	0. 1 mol • L ⁻¹	7.66	0. 1 mol • L ⁻¹	10	7. 66: 10	23.74
D	0. 25mol · L ⁻¹	7.66	0. 25mol · L ⁻¹	10	7.66:10	23.74
Е	0. 5 mol • L ⁻¹	7.66	0. 5mol • L-1	10	7.66:10	23.74

收稿日期:2002-04-10。收修改稿日期:2002-07-23。

国家自然科学基金资助项目(No. 20076004)。

* 通讯联系人。E-mail: zhang-jingchang@ 263. net

第一作者:曹维良,男,60岁,教授;研究方向:纳米材料及纳米催化剂。

同,分别为1、10:7.66 和7.66:10;后2组样品 Cd²⁺、S²⁻离子溶液浓度逐渐增大,依次为0.25mol・ L⁻¹,0.5mol・L⁻¹,但Cd²⁺/S²⁻均保持与样品C相 同。

1.3 仪器

透射电子显微镜 TEM(日立 H-800), 粉末 X-射 线衍射仪 XRD(岛津 HR6000, Cu 靶, X 射线管管压 40.0kV, 管流 30mA, 扫描角度 15°~70°), 傅里叶红 外光谱仪 FT-IR(布鲁克 VECTOR22), 电导率仪 (DDS-11C)。

2 结果与讨论

2.1 CdS 纳米粒子的结构表征

2.1.1 TEM

由 TEM 照片 (见图 1)可以得到产物的粒径及 形貌(见表 2)。由图 1 可以看出,在 Cd^{2+} 、 S^{2-} 离子浓 度保持 0. 1mol·L⁻¹(即A、B、C 3 组样品)时,晶体 均为球形;但选择不同的 Cd^{2+}/S^{2-} ,对产物粒径有 明显影响。 Cd^{2+} 过剩,即 Cd^{2+}/S^{2-} 为 10:7.66 时,粒 径最大 (图 1(B)); S²⁻过剩,即 Cd²⁺/S²⁻为7.66:10 时,粒径最小,为7~10nm(图 1(C))。在 Cd²⁺/S²⁻保 持7.66:10(即 C、D、E 3 组样品)时,随着 Cd²⁺、S²⁻ 浓度的增加,即由0.1mol·L⁻¹,依次增为 0.25mol·L⁻¹,0.5mol·L⁻¹时,晶体的形貌由球形 向棒状过渡(见图 1(C)、(D)、(E))。文献报道的 CdS 形貌多为球形^[1-3],只有少数文献^[4,5]得到棒状的 CdS。本文仅通过改变 Cd²⁺、S²⁻的浓度,控制了 CdS 晶体的形貌,对 CdS 形态学研究有重要的参考价 值。

2.1.2 ED 及 XRD

半导体纳米材料的晶体结构是很重要的,不同 的晶体结构决定了其在光化学方面的不同功能及应 用。本文对样品分别进行了电子衍射及 X 射线衍射 的研究(见图 1(F)和图 2)。

实验中对图 1 中的 5 个样品均进行了电子衍射研究,得到了相应的晶体衍射图形。以样品 C 的 ED 照片为例 (见图 1(F)), ED 分析是在加速电压 150kV,相机常数为 0. 8mol・L⁻¹下进行的。对电子

图 1 CdS 纳米粒子的电镜照片及 ED 照片 Fig. 1 TEM photos and ED image of CdS nanoparticles A, B, C, D, E: TEM photos of samples A, B, C, D, E; F: ED image of sample C

图 2 CdS 纳米粒子的粉末 X- 射线衍射谱图

衍射图形的分析,有卡片法和特征基本平行四边形 法两种,卡片法非常繁琐,甚至会出现误差等种种不 利情况^[6],本文选用特征基本平行四边形法。测得 $r_1 = r_2 = r_3 = 1.233$ cm,计算得电镜常数 0.02368 m· Å,因此 $r_2/r_1 = r_3/r_1 = 1, d_{r_1} = L\lambda/r_1 = 1.920$ Å。查面 心立方和六方晶系的特征基本平行四边形表,发现 与前者表中的第一行数据对应: $r_2/r_1 = r_3/r_1 = 1,$ $d_{r_1} = a/2.828 = 5.818/2.828 = 2.057$ Å(a为面心立 方 CdS 的晶胞参数),由此可以确定制得的 CdS 为 闪锌矿构型,膜面为 [111],晶面指标为 (202)和 (022)。

对样品 C 的 XRD 测试 (见图 2) 也证明了 CdS 的晶型是闪锌矿构型, 最强的三个衍射峰相应的晶 面间距依次是 3.3722Å、3.0985Å、1.7598Å, 分别对 应于闪锌矿 CdS 的 (111)、(200)、(311) 三个晶面的 晶面间距 3.36Å、2.90Å、1.753Å。

2.1.3 FT-IR

对 C 样品进行了红外检测 (见图 3), 2359cm⁻¹ 为空气中 CO₂ 的吸收峰, 3741cm⁻¹和 3431cm⁻¹处 的吸收峰为样品中吸附 H₂O 的 O-H 键的反对称及 对称伸缩振动。2924cm⁻¹为 PVP 中 CH₂ 的 C-H 键 的伸缩振动, 1425cm⁻¹及 625cm⁻¹为 C-H 键的面内 摇摆及面外摇摆振动, 1280cm⁻¹及 1104cm⁻¹为 C-N 键的反对称及对称伸缩振动, 1002cm⁻¹为 C-C 键的 伸缩振动; 1644cm⁻¹为 C=O 键的伸缩振动, 与文献 报道的 PVP 的特征吸收 1667cm⁻¹(即非常强的 C=

O 的伸缩振动吸收)¹⁷¹相比,向低波数发生了明显的 移动,这是因为溶液中较多的 H⁺与酰胺结构形成氢 键,使 C = O 的 π 电子云和 O 原子的孤对电子顺次 向 H⁺转移,导致自身的电子云密度降低造成的。由 于 CdS 的吸收位于远红外区,在谱图中反映不出此 信息。

根据以上分析可知, CdS 颗粒的外表面被 PVP 所包覆,且 CdS 与 PVP 之间的键合结构可表示为:

$\mathbf{C} = \mathbf{0} \cdots \mathbf{H}^* \cdots \mathbf{S}^2$

可做如下解释: 在刚开始的 $Cd(NO_3)_2$ 和 PVP 混合溶液中,由于 pH 值较小,较富裕的 H⁺与 PVP 中 O 元素结合,即 PVP 被质子化;同时,由于 S²⁻过 剩,过剩的 S²⁻吸附在 CdS 晶粒的表面,再与质子化 的 PVP 因正负电荷间的互相吸引而结合。

2.2 Cd²⁺/S²⁻、PVP 用量对合成的影响

与多数文献相比,本文之所以在 Cd²⁺、S²⁻溶液 浓度增大 100 倍的情况下,仍然制备出了透明、均 一、稳定的 CdS 水溶胶,且粒径只有 7~10nm,这主 要缘于对 Cd²⁺/S²⁻、PVP 用量的选择。

2.2.1 Cd²⁺/S²⁻对合成的影响

从表 2 及表 3 可以看出,不同的 Cd²⁺/S²⁻对产物的性状影响很大。

现有文献在制备 CdS 时多保持 Cd²⁺过剩,制得 表面富 Cd²⁺的 CdS 纳米粒子^{11,21}。本文按 Cd²⁺/S²⁻ 等于1、大于1、小于1 三种情况(依次为A、B、C 3 组

· 1000 ·

表 3 产品的聚集状态

第18卷

Table 3 Aggregation States of the Products					
product	A	В	C	D	E
$\overline{\mathrm{Cd}^{2^{+}}/\mathrm{S}^{2^{-}}}$	1	10: 7.66	7. 66: 10	7.66:10	7.66:10
aggregation state of the product	underlayer: orange tiny deposit superstratum:	underlayer: orange tiny deposit superstratum:	orange transparent sol	underlayer: yellow deposit superstratum:	underlayer: yellow deposit superstratum:
aggregation state after half month	orange solution underlayer: yellow deposit superstratum:	orange solution underlayer: yellow deposit superstratum:	orange transparent sol	coloriess solution underlayer: yellow deposit superstratum:	underlayer: yellow deposit superstratum:
	buff solution	colorless solution		colorless solution	colorless solution

样品)进行讨论,发现 Cd²⁺/S²⁻小于1的C样品,即 S²⁻过剩时,才能得到均一、稳定的胶体,且粒径也最 小。这是本文的创新之一,原因解释如下:

物质表面对正负离子的不相等吸附可以使物质 表面带电。如果物质表面与水介质接触,则带负电 的可能性比带正电的大。这是由于正离子通常比负 离子更容易发生水合作用,因而正离子保留在水介 质体相中的可能性较大;反之,较大的、较难水合的 和较易极化的负离子,特别容易被物质表面吸 附^[8]。因此,在CdS与水形成的混合体系中,CdS的 表面更容易吸附 S²⁻,而不是 Cd²⁺。而且,CdS的表 面吸附了 S²⁻离子之后,使彼此之间互相排斥而不 易团聚,这比选择 Cd²⁺/S²⁻为1的效果也要好。

此外,选择 Cd^{2+}/S^2- 为1 比选择 Cd^{2+}/S^2- 大于 1 的效果好 (可以从粒径及分散性上看出),这是因 为质子化的 PVP 直接与 CdS 中 S 元素作用,从而使 CdS 仍然被 PVP 所分散及包覆,使粒子不易长大和 聚集;而 Cd^{2+}/S^2- 大于1 时,虽然 CdS/Cd²⁺的颗粒 与颗粒之间互相排斥而部分限制了粒子的生长和团 聚,但 CdS/Cd²⁺粒子与质子化的 PVP 之间互相排 斥而无法作用,再加上 Cd²⁺、S²⁻浓度又较大,所以 结果 没有 Cd²⁺/S²⁻小于1 和 Cd²⁺/S²⁻等于1 时 好。

2.2.2 PVP 在反应体系中的作用及 PVP 的 最佳用量

PVP 在反应体系中起着举足轻重的作用, PVP 用量的选择对反应也有重要的影响。PVP 是非离子 型表面活性剂,在低浓度时,它是以单个分子的状态 存在的,随着浓度的增加,这些分子之间会自动缔合 成胶体大小的质点,称之为胶束。开始形成胶束的 最低浓度称为临界胶束浓度(CMC)。当表面活性剂 的浓度达到临界胶束浓度之后,某些物理性质如电 导、表面张力、渗透压等会发生突变^[8,9]。据此,在实 验温度下测试了 PVP 的浓度与电导率之间的关系, 如图 4 所示,得出临界胶束浓度为: CMC = 6.540× 10^{-4} mol·L⁻¹。样品 C 中 PVP 的最终浓度为 1.932× 10^{-3} mol·L⁻¹,是临界胶束浓度的 2.95 倍,因此 在实验中,PVP 形成了胶束 (如图 5 中虚线圈内所 示)。其憎水的非极性基互相吸引 (靠 van der Waals 力,主要是色散力),埋在胶团的内部,减少了它们与 水相的接触,降低了体系的能量;亲水的极性基伸向 水相,形成热力学上稳定的体系(如图 5)。

PVP 胶束的形成,就好象把 CdS 微粒隔离在一个一个的小空间内,从而避免它们之间的缔合;而且,大量的 PVP 胶束使介质粘度大大增加,降低了物质扩散到 CdS 质点表面的速度,从而使结晶生长速度变慢,而有充分多的时间生成更多的晶核,得到大量细小的 CdS 质点。

因此,我们提出了产品的结构模型,如图 5 所 示。

另外,为了确定 PVP 的最佳用量,考察了 PVP 在反应体系中的浓度与 CMC 间的关系。以 C 样品为 例,保持其它条件不变,前 3 组样品是把 10% PVP

Fig. 4 Relation of the concentration and the conductance rate of PVP

T

图 5 CdS 样品的结构模型

Fig. 5 Structure model of the CdS nanoparticles

	表 4	PVP 的常	R度与 CMC 自	勺关系		
Table 4	Relation	of the C	oncentration	of PVP	and	СМС

sample	1	2	3	4	5
PVP concentration	10%	10%	10%	20%	20%
the dosage of PVP/mL	11.87	5.94	2.97	9	11.33
$C_{PVP}/10^{-4} (mol \cdot L^{-1})$	13.54	8.48	4.85	23.84	27.60
CPVP/CMC	2.07	1.30	0. 74	3.64	4.20
shape of the product	deposit	deposit	deposit	sol	sol

的加人量由 23.74mL 依次减半, 后 2 组样品改用 20% 的 PVP, 其用量分别为 9mL、11.33mL, 如表 4。 它们在反应体系中的浓度也发生相应改变: 样品 3 的浓度低于临界胶束浓度, 其余 4 个样品的浓度从 左到右依次是临界胶束浓度的 2.07 倍、1.30 倍、 3.64 倍、4.20 倍。结果发现前 3 组样品生成了沉淀, 后两组样品是胶体。这说明本实验对 PVP 的用量是 有限制的, 只有保持 PVP 在反应体系中的浓度为 CMC 的 3 倍及 3 倍以上时, 才能得到均一稳定的胶 体。本文的 C 样品 CPVP/CMC 为 3 左右, 是比较适 宜的。

3 结 论

(1)利用溶胶 - 凝胶法,在表面过剩 S²⁻及 PVP 存在下,成功地合成了 CdS 纳米粒子。最小粒径 7~ 10nm,闪锌矿构型,粒径及粒子形貌在一定范围内 可控。其粒径由 Cd²⁺/S²⁻及 Cd²⁺、S²⁻浓度控制,粒 子形貌由 Cd²⁺、S²⁻浓度控制。

(2) 与文献中保持 Cd²⁺过剩^[1,2]的方法不同,本 文通过对不同 Cd²⁺/S²⁻的大小的考察,提出了 S²⁻ 过剩的方法,得到了均一、稳定、粒径最小的 CdS 胶体。 (3) 通过对 PVP 浓度与电导率关系的研究,找 到了实验温度下 PVP 的临界胶束浓度,确定 PVP 在 反应体系中形成了胶束,从而正确分析了 PVP 在反 应中的作用。

(4) 通过考察 PVP 在反应体系中的浓度与 CMC 间的关系,发现当 CPVP/CMC 为 3 左右时 PVP 的用量是最佳用量。

(5) 通过红外光谱和 PVP 在反应体系中的作用 等的分析,提出了 CdS/PVP 复合体系的结构模型。

参考文献

- CHEN Hong-Ming(陈红明), HUANG Xin-Fan(黃信凡), HUANG Hong-Bin(黃宏彬) et al Nanjing Daxue Xuebao (Chinese Journal of Nanjing University), 1998, 34(1), 35.
- [2] ZHANG Yu(张 字), ZHANG Jun-Xiang(张俊祥), FU De-Gang(付德刚) et al Wuji Huaxue Xuebao(Chinese J. Inorg. Chem.), 1999, 15(5), 595.
- [3] YU Jian-Qun(俞建群), JIA Dian-Zeng(贾殿赠), ZHANG Hui(张 慧) et al Huaxue Tongbao(Chemistry), 1998, (2), 35
- [4] Li Y. D., Liao H. W., Ding Y. et al Chem. Mater., 1998, 10(9), 2301.

TT T

- [5] Yu S. H., Wu Y. S., Yang J. et al Chem. Mater., 1998, 10 (9), 2309.
- [6] YANG Guo-Li(杨国力), AI Bao-Rui(艾宝瑞) Electron Diffraction Analytical Method of Unit Crystal in High Pressure -Typical and Basic Parallelogram Analytical method(单晶高 压电子衍射分析法一特征基本平行四边形分析法), Beijing: Science Press, 1979, p22.
- [7] WANG Zheng-Xi(王正熙) Infrared Spectrum Analysis and Identification of Polymer(聚合物红外光谱分析和鉴定),

Chengdu: Sichuan University Press, 1989.

- [8] Dunan J. Shaw, Translated by ZHANG Zhong-Lu(张中路), ZHANG Ren-You(张仁佑) Introduction to Colloid and Surface Chemistry(胶体与表面化学导论), 3 rd Ed, Beijing: Chemical Industry Press, 1989, p157.
- [9] ZHOU Zu-Kang(周祖康), GU Ti-Ren(顾惕人), MA Ji-Ming(马季铭) Base of Colloid Chemistry(胶体化学基础), Beijing: Beijing University Press, 1991, p63.

Two Important Influential Factors to the Preparation and Structure Characterization of Surface-Capped CdS Nanocrystals

CAO Wei-Liang ZHANG Kai-Hua ZHANG Jing-Chang* (Faculty of Science, Beijing University of Chemical Technology, Beijing 100029)

CdS nanocrystals surface-capped with PVP were synthesized by Sol-Gel method. Two important influential factors $(Cd^{2+}/S^{2-} \text{ and PVP})$ for the preparation of the CdS nanocrystals and their influential mechanisms were investigated. It is confirmed that the effect of superfluous S^{2-} and addition of PVP on the reaction system are two important factors in the preparation of the CdS nanocrystals in high Cd^{2+} and S^{2-} concentration solution, and the best dosage of PVP was determined. The structure was characterized by means of TEM, ED, XRD and FT-IR techniques. It is found that the size of the minimal particles are $7 \sim 10$ nanometers, and the configuration is hawleyite and the size and shape can be controlled by Cd^{2+}/S^{2-} and the concentration of reactant. Finally, the structure model of CdS/PVP was suggested.

Keywords: CdS nanoparticles Cd²⁺/S²⁻ PVP