第 10 期 2002 年 10 月 Vol. 18, No. 10 Oct.,2002

研究简报

$A_2Ca[B_4O_5(OH)_4]_2 \cdot 8H_2O(A = Rb, Cs) 硼氧酸盐复盐的合成与表征$

朱黎霞¹ 岳 涛² 高世扬^{*,1,2} 夏树屏¹ (¹中国科学院青海盐湖研究所西安二部,西安 710043) (²兰州大学化学系,兰州 730000)

关键词:	键词: 铷(铯)硼氧酸盐复盐		合成	物化表征
分类号:	0614.1	0614.2	O613. 8⁺	1

硼氧酸盐晶体结构复杂,因此出现了许多具有 特殊物理性能的晶体功能材料^[1,2], 尤其是重稀碱金 属硼氧酸盐(或复盐),如 CsLiB₆O₁₀^[3]、LiRbB₄O₇^[4]和 CsB₃O₅(CBO)^[5]都是非线性光学材料。一些学者对 物、铯的偏硼氧酸盐、四硼氧酸盐和五硼氧酸盐的合 成、性质及晶体结构等进行过研究[6~9]。硼氧酸盐复 盐,大多为碱金属和碱土金属、碱金属和碱金属及碱 土金属和碱土金属的硼氧酸盐^[10],如自然界存在的 钠硼解石 {NaCa[BsO6(OH)6] · 5H2O}、硼钠镁石 {Na₂Mg[B₆O₈(OH)₄]₂ · 6H₂O}、水方硼石 {CaMg [B₆O₈(OH)₆] · 3H₂O}和水硼镁钙石 {CaMg[B₃O₃ (OH)₅]₂·6H₂O}等^[11]。重稀碱金属(Rb, Cs)的水 合硼氧酸盐复盐仅见 Ali 等^[12]报道的 NaRb[B4Os (OH)₄]·4H₂O。本文合成了新的铷(铯)硼氧酸盐 复盐 Rb₂Ca[B₄O₅(OH)₄]₂ · 8H₂O 和 Cs₂Ca[B₄O₅ (OH)₄]₂·8H₂O, 对其组成, 物理化学性质进行了研 究,获得一些新结果。

1 实验部分

1.1 试剂和仪器

Rb₂CO₃ 和 Cs₂CO₃(江西锂厂生产) 经原子吸收 光谱法测定杂质离子含量(Li⁺, K⁺)不超过 0.5%。 H₃BO₃(西安化学试剂厂生产) 和 CaCl₂(北京化学试 剂厂生产)均为分析纯试剂。

X-射线粉末衍射仪为日本理学 D/MAX-3C,
Cu Kα,工作电压 40kV,扫描速度为 3°・min⁻¹。

FT-IR 光谱和 Ramam 光谱分别采用 Nicolet 公司的 NEXUS 670 和 Almega Dispersine Raman(将样品放 在显微镜下,放大倍数为 500X,将光点聚焦在样品 表面上,激光发光波长 532nm,狭缝宽度为 25μm)。

热分析仪为德国 NETZSCH-Geratebas 公司的 STA449C(N₂ 气氛,升温速率为 10℃・min⁻¹)。

1.2 硼酸盐复盐的合成

称取 46. 2g Rb₂CO₃ 和 53. 0g H₃BO₃ 加入到 300 mL 水中加热溶解, 待溶液澄清后, 继续加热 15min, 使 CO₂ 完全释放,将研细的 23. 0g CaCl₂ 加入到上述 溶 液中, 立刻出现白色沉淀, 继续搅拌 20min, 室温 密封放置约 10d, 获得 1~2mm 粒径的 Rb₂Ca[B₄O₅ (OH)₄]₂ · 8H₂O 单晶。

称取 32.05g Cs₂CO₃ 和 26.5g H₃BO₃ 加入到 150mL 水中,加热搅拌至溶液澄清后,继续加热 15min,将研细的 11.5g CaCl₂ 加入到上述溶液中,立 刻出现白色沉淀,继续搅拌 20min,使 CO₂ 完全释 放,室温密封放置约 60d,获得 1~2mm 粒径的 Cs₂Ca[B₄O₅(OH)₄]₂ · 8H₂O 单晶。

1.3 分析方法

Rb 和 Cs 含量测定: 在微酸性溶液中, 铷、铯离 子与四苯硼化钠反应生成一种溶解度小又具有化学 计量的白色沉淀 RbB(C₆H₅)₄ 和 CsB(C₆H₅)₄, 可用于 重量法分析铷和铯^[13,14]。Ca 的含量采用 EDTA 络合 滴定法测定; B 的含量采用甘露醇法测定; H₂O 含量 由热分析结果得出。

TI T

收稿日期:2002-05-27。收修改稿日期:2002-07-01。

国家自然科学基金资助项目(No. 29971032)。

^{*}通讯联系人。E-mail; gsyabc@ pub. xaonline. com

第一作者:朱黎霞,女,36岁,在职博士生;研究方向:硼酸盐化学。

第18卷

· 1064 ·

2 结果与讨论

2.1 铷、铯硼氧酸盐复盐的化学组成

Rb₂Ca[B₄O₅(OH)₄]₂ · 8H₂O 和 Cs₂Ca[B₄O₅ (OH)₄]₂ · 8H₂O 的化学分析结果列于表 1 中,实验 值与计算值一致。

2.2 铷(铯)硼氧酸盐复盐的 X-射线粉末衍射

图 1 为复盐 Rb₂Ca[B₄O₅(OH)₄]₂ · 8H₂O 和 Cs₂Ca[B₄O₅(OH)₄]₂ · 8H₂O 的 X- 射线粉末衍射结 果。

Rb₂Ca[B₄ O₅(OH)₄]₂ · 8H₂O 衍射主峰出现在: $d = 7.570Å(I/I_0 = 34), \quad d = 5.242Å(I/I_0 = 43),$ $d = 4.648Å(I/I_0 = 67), \quad d = 4.251Å(I/I_0 = 68),$ $d = 3.220Å(I/I_0 = 25), \quad d = 3.151Å(I/I_0 = 100),$ $d = 3.099Å(I/I_0 = 51), \quad d = 3.064Å(I/I_0 = 41),$ $d = 2.364Å(I/I_0 = 69)_0$

两种硼酸盐复盐的衍射峰基本对应,只是 d 值 略有偏移,相对强度(*I*/*I*₀)有所不同。

2.3 铷(铯)硼氧酸盐复盐的 FT-IR 光谱

图 2 为水合铷(铯)硼氧酸盐复盐的 FT-IR 光 谱。[B₄O₅(OH)₄]²⁻硼氧配阴离子由 2 个 BO₃ 三角形 和 2 个 BO₄ 四面体组成,通过共用的 B-O-B 桥组成 2 个六元环。在 3600 ~ 3000 cm⁻¹ 谱带区出现的四个 谱峰归属于 O-H 伸缩振动。2900 ~ 2200 cm⁻¹ 谱带区 出现的峰是由于氢键引起的 O-H 伸缩振动。1700 ~ 1600 cm⁻¹ 谱带区出现的峰归属于晶格水 H-O-H 弯 曲振动。1500 ~ 500 cm⁻¹ 谱带出现的振动峰被认为 是硼氧配阴离子的特征振动峰。Janda 和 Heller^[15]用 同位素替代法确定四硼酸盐中硼氧配阴离子的对称 脉动振动出现在大约 560 cm⁻¹。

查福标^[16]认为1130cm⁻¹ 谱带出现的峰是

图 2 水合硼氧酸盐复盐的 FT-IR 光谱 Fig. 2 FT-IR spectra of synthetic mixed borates A: Rb₂Ca[B₄O₅(OH)₄]₂ · 8H₂O B: Cs₂Ca[B₄O₅(OH)₄]₂ · 8H₂O

B-O-H 的弯曲振动。 $Rb_2Ca[B_4O_5(OH)_4]_2 \cdot 8H_2O$ 在 FT-IR 光谱 1453.70(1432.58,宽弱峰) cm^{-1} 处出现 的峰和 $Cs_2Ca[B_4O_5(OH)_4]_2 \cdot 8H_2O$ 在 FT-IR 光谱 1345.45(1343.71,中强峰) cm^{-1} 处出现的峰归 属于三配位硼氧键[B(3)-O]的非对称伸缩 振动。1290.39(1282.68)、1125.39(1120.55) cm^{-1} 、 1157.98(1148.61)和1125.39(1120.55)处出现的 弱峰归属于 B-O-H 面内弯曲振动。1067.94 (1063.55,弱)和1001.76(1001.57,中强) cm^{-1} 出现

	表 1	Rb ₂ (Cs)Ca[B4O5(OH)4]2・8H2O 的化学分析结果
Table 1	Cher	mical Analyses Results of Rb ₂ (Cs)Ca[B ₄ O ₅ (OH) ₄] ₂ · 8H ₂ O

compounds	Rb2O/wt%	Cs2O/wt%	CaO/wt%	B2O3/wt%	H2O/wt%
Rb2Ca[B4O5(OH)4]2 · 8H2O	25.42		7.58	37. 81	29.40
calculation	25.35		7. 59	37.76	29.30
$Cs_2Ca[B_4O_5(OH)_4]_2 \cdot 8H_2O$		33.79	6.76	33.45	25.75
calculation		33.86	6.73	33.46	25.95

的峰归属于四配位硼氧键[B(4)-O]的非对称伸缩 振动。954.22(943.04)和833.08(831.06)cm⁻¹ 谱带 区的强峰分别归属于三配位硼氧键[B(3)-O]和四 配位硼氧键[B(4)-O]的对称伸缩振动。707.90 (703.00,中)、659.06(661.92,弱)和590.92 (589.28,弱) cm⁻¹ 谱带区出现的峰可视为三配位 [B(3)-O] 的弯曲振动峰;532.05(532.06) cm⁻¹ 为 [B4O₅(OH)₄]²⁻的对称脉动振动峰;464.09(464.20) cm⁻¹ 为四配位硼氧键[B(4)-O]的弯曲振动峰。

2.4 铷(铯)硼氧酸盐复盐的热分析

图 3 和图 4 分别为 Rb₂Ca[B₄O₅(OH)₄]₂ • 8H₂O 和 Cs₂Ca[B₄O₅(OH)₄]₂ • 8H₂O 的 TG 和 DSC 结果。 TG 曲线在温度分别为 70 ~ 500℃ 和 100 ~ 600℃ 出 现一个连续的失重曲线, 峰温分别为 118.4 和 116.8℃,失重率分别为 29.40% (计算值 29.30%) 和 25.75% (计算值 25.95%),对应于 12 分子水的 脱失。

图 3 Rb₂Ca[B₄O₅(OH)₄]₂ · 8H₂O 的热分析结果

TG and DSC of Rb₂Ca[B₄O₅(OH)₄]₂ · 8H₂O

Fig. 3

Rb₂Ca[B₄O₅(OH)₄]₂ · 8H₂O 的 DSC 曲线上出现 一个吸热峰(118.4℃)和一个放热峰(690.9℃)。 强的吸热峰对应于结晶水和羟基水的脱失,变为无 定形的硼氧酸盐 Rb₂CaB₈O₁₄, ΔH = 30908.63kJ · mol⁻¹。弱的放热峰是由于无定形的硼氧酸盐 Rb₂CaB₈O₁₄再结晶化引起的, $\Delta H = -2069.79$ kJ・ mol⁻¹。Cs₂Ca[B₄O₅(OH)₄]₂・8H₂O 的 DSC 曲线上出 现了 3 个吸热峰,峰温分别为 116.8,548.4 和 813.3℃。第一个强的吸热峰和第二个小吸收峰对应 于结晶水和羟基水的脱失, ΔH 分别为 52547.74 kJ・mol⁻¹和 1197.43kJ・mol⁻¹。峰温为 813.3℃的 吸热峰可能是由于熔融引起,而峰温为 662.5 和 700.6℃的两个放热峰,可能是由于无定形的 Cs₂CaB₈O₁₄再结晶引起的。

参考文献

- [1] CHEN Chuang-Tian(陈创天), WU Bo-Chang(吴柏昌), JIANG Ai-Dong(江爱栋), YOU Gui-Ming(尤桂铭) Zhongguo Kexue B(Science in China(Series B)), 1985, B28, 235.
- [2] Chuangtian C., Bochang W. et al J. Opt. Soc. Am., 1989, B6, 616.
- [3] Tu Jun-Ming, Douglas A. Keszler. et al Mater. Res. Bull., 1995, 30(2), 209.
- [4] Yasuhiro Ono., Michiko Nakaya., Tamotsu Sugawara J. Crystal. Growth., 2001, 229, 472.
- [5] Wu Y., Sakaki T. et al Appl Phys Lett., 1993, 62, 2614.
- [6] Touboul M., Penin N., Nowogrocki G. J. Solid State Chem., 2000, 149, 197.
- [7] Touboul M., Penin N., Nowogrocki G. J. Solid State Chem., 1999, 143, 260.
- [8] Kesans A. D., Translated by CHEN Si-Wei(成思危) The Synthesis of Borates and their Investigation(硼酸盐在水溶 液中的合成及其研究), Beijing: Science Press, 1995, p72.
- [9] Zviedre I. I., Ievins A. F. Latvijas PSR Zinatnu Akad. Vestis Kim. Ser., 1974, 4, 395.
- [10]Farmer J. B. In Advance in Inorganic Chemistry and Radiochemistry, 1982, 187.
- [11]XIE Xian-De(谢先德), CHA Fu-Biao(查福标) Mineral Physics of Borates(硼酸盐矿物物理学), Beijing: Earthquake Press, 1993, p111, p118, p124, p129.
- [12]Ben Ali A. Smiri L. S. et al J. Alloy and Compounds., 2001, 322, 153.
- [13]YUE Tao(岳 海), GAO Shi-Yang(高世扬) et al Yanhu Yanjiu(Journal of Salt Lake Research), 2000, 8(3), 1.
- [14]HU Man-Chang(胡满成), LIU Zhi-Hong(刘志宏), GAO Shi-Yang(高世扬) et al Wuji Huaxue Xuebao(Chinese J. of Inorg. Chem.), 2000, 16(2), 299.
- [15] Janda R., Heller G. Spectrochim Acta, 1980, 36A, 997.
- [16] CHA Fu-Biao(查福标) Thesis of the Doctorate of Institute of Chemical Geography, Academic Sinica(中国科学院地球化 学研究所博士论文), 1991.

第 18 卷

- - ---

Synthesis and Characterization of $A_2Ca[B_4O_5(OH)_4]_2 \cdot 8H_2O(A = Rb, Cs)$

ZHU Li-Xia¹ YUE Tao² GAO Shi-Yang^{*, 1, 2} XIA Shu-Ping¹

(¹Xi' an Branch, Institute of Salt Lakes, Chinese Academy of Sciences, Xi' an 710043) (²Department of Chemistry, Lanzhou University, Lanzhou 730000)

The new mixed borates with formula $(Rb_2Ca[B_4O_5(OH)_4]_2 \cdot 8H_2O \text{ and } Cs_2Ca[B_4O_5(OH)_4]_2 \cdot 8H_2O)$ were prepared by reaction Rb(Cs) -borate aqueous solution with CaCl₂. Two kinds of compounds were characterized by chemical analysis, X-ray powder diffraction, FT-IR spectra and thermal analysis.

Keywords: Rb(Cs)-mixed borates synthesis characterization