第 11 期 2002 年 11 月 Vol. 18, No. 11 Nov., 2002

研究简报

新铌酸盐 BasNdTi3Nb7O30 的合成与介电性能

方 亮* 张 辉 鄢俊兵 杨卫明 (武汉理工大学材料复合新技术国家重点实验室,武汉 430070)

关键词:	新铌酸盐	钨青铜结构	介电特性	X 射线衍射
分类号:	0614. 512			

一些铁电铌酸盐具有优良的电光性能和非线性 光学性能,因此该类化合物的人工合成、结构与性能 的研究受到了重视,其中钨青铜结构的系列晶体(例 如 SBN、KNSBN、SCNN)在材料的制备和器件的设计 方面都取得了很大进展,它们在实时全息存储、集成 光学与光信号处理等领域具有广泛的应用前景^[1]。 Neurgaonkar 等人报道了在 BaO-Nb2Os 体系中通 过掺 Ti4+合成了四方钨青铜结构新铌酸盐 Ba₆Ti₂Nb₈O₃₀,并认为该类晶体在光折变、电光转化 以及压电等方面具有较好的应用前景^[2]。为了探索 新型介电、铁电材料, Panigrahi 等合成了通式为 BasRTi₃Nb₇O₃₀(R = Eu, Gd, Sm) 系列新化合物, 并进 行了介电特性研究^[3,4]。最近我们也进行了新铌、钽 酸盐 Ba₆Ti₂Ta₈O₃₀, Ba₅YTi₃Nb₇O₃₀, Ba₅BiTi₃Nb₇O₃₀的 合成与介电特性研究^[5~7]。在本文中,我们采用高温 固相反应法合成了新铌酸盐 BasNdTi3Nb7O30,采用粉 晶 XRD 对其结构进行了分析,并测试了其烧结体的 介电特性。

1 实验部分

1.1 **铌酸盐** BasNdTi3Nb7O30 的合成

原料采用分析纯试剂 BaCO₃、Nd₂O₃、TiO₂和 Nb₂O₅,按化学计量比配料,磨细混合均匀后,在 Pt 坩埚加热至 1250℃,保温 48h 进行固相反应,可以获得灰色长条状的多晶体。

1.2 样品的测试

分别采用化学分析及电子探针元素定量分析法

收稿日期:2002-06-05。收修改稿日期:2002-08-19。

(EPMA) 测定了化合物多晶体的成份,所用仪器为 JCXA-733 型电子探针微区分析仪。将样品放入玛瑙 研钵中磨细至 5~10 μ m,在日本理学 D/MAX-RB 型 转靶 X 射线衍射仪进行测试。测试条件为:工作电 压 40kV,工作电流 120mA;步进扫描,步距 0.01°, Cu 靶 $K\alpha_1$ 辐射($\lambda = 0.154060$ nm),石墨单色器。

将固相反应得到的多晶体磨细后,在 30Mpa下 压制成圆片状,再在 200MPa下冷等静压提高生坯 密度,然后置于 Pt 片上在 1350℃烧结 4h,将烧结后 的样品刷银电极,在 600℃保温 20min。用排水法测 量陶瓷体的密度。用 HP4284 型 LCR 测量仪测量了 BasNdTi3NbrO30 烧结体的介电 - 温度特性与室温下 的介电 - 频率特性,温度变化范围为室温~600℃,频率变化范围: 1~1000kHz。

2 结果与讨论

2.1 Ba₅NdTi₃Nb₇O₃₀ 的表征

化合物多晶体分别经化学分析及电子探针 (EPMA)定量分析,综合测试结果(见表1),可以确 定该化合物的分子式为 BasNdTi3NbrO30。

Ba₅NdTi₃Nb₇O₃₀ 与 Ba₆Ti₂Nb₈O₃₀ 的 X 射线衍 射 谱 见 图 1, 采 用 改 编 的 WDS11 程 序 对 Ba₅NdTi₃Nb₇O₃₀ 的 X 射线衍射数据进行指标化,结 果见表 2,其中每一个衍射峰都能得到较好的指标, 品质因子 $F_{30} = 75(0.044, 60)$,表明合成的样品为 Ba₅NdTi₃Nb₇O₃₀ 纯相。通过最小二乘法修正后的 Ba₅NdTi₃Nb₇O₃₀ 晶胞参数为 a = 1.24424(4) nm, c =

国家自然科学基金资助项目(No. 50002007),教育部重大项目及国际衍射数据中心(ICDD)Grant-in-Aid 基金资助项目(No. 01-40)。

* 通讯联系人。E-mail: fangliang001@263. net

第一作者:方 亮,男,31岁,博士,副教授;研究方向:无机功能材料。

表1

化合物的成分定量分析结果

第 18 卷

维普资讯 http://www.cqvip.com

Та	able I Re	sults of Q	uantitative	Analysis of	l Elements
		wt	-h-mi-al farmulu		
methods	Ba	Nd	Ti	Nb	chemical formula
chemical analysis	32. 58	6.80	6. 81	30. 95	Ba5Ndo 99Ti3.01Nb7 03O30 08
EPMA	32.52	6.77	6.87	31.06	BasNdo. 99Ti3 03Nb7. 06O30 19

表 2	Ba5NdTi3Nb7O30	的 X 射线粉末谷	衍射数据
Table 2 X-	rav Powder Diff	raction Data of	Ba ₅ NdTi ₃ Nb ₇ O ₃₀

d∕Å	1 / Io	h	k	l	d∕Å	1 / I ₀	h	k	l	d∕Å	1/10	h	k	l
8.8208	2	1	1	0	2. 3977	2	4	1	1	1. 6787	3	6	3	1
5.5591	3	2	1	0	2.3105	7	5	2	0	1.6519	11	4	1	2
4. 3969	4	2	2	0	2. 2741	4	4	2	1	1. 6074	28	5	5	1
3.9468	17	0	0	1	2. 1996	3	5	5	0	1.5684	3	7	2	1
3.6001	3	1	1	1	2. 1340	20	5	3	0	1. 5088	8	8	2	0
3.4505	37	3	2	0	2.0752	6	5	1	1	1. 4664	7	6	6	0
3. 3325	4	2	0	1	1. 9940	5	5	2	1	1.4563	2	8	3	0
3.2202	73	2	1	1	1.9739	29	0	0	2	1. 4490	5	5	3	2
3.1112	10	4	0	0	1. 8773	4	5	3	1	1. 3847	4	5	4	2
3.0176	71	4	1	0	1.8551	6	6	3	0	1.3663	3	8	3	1
2.9380	35	2	2	1	1.8358	10	6	0	1	1.3135	5	5	5	2
2. 7862	100	3	1	1	1.7610	13	6	2	1	1.2480	4	3	1	3
3. 5977	22	3	2	1	1.7435	12	5	4	1	1. 2158	3	7	4	2
2 4436	5	4	٥	1	1 7135	3	3	2	2					

Fig. 1 XRD patterns of (a) Ba₅NdTi₃Nb₇O₃₀ and (b) Ba₆Ti₂Nb₈O₃₀

0.39476(2) nm, 理论密度为 5.719g・cm⁻³, 陶瓷体 测量密度为 5.570g・cm⁻³, 致密度为 97.4%。

与四方钨青铜结构铌酸盐 Ba₆Ti₂Nb₈O₃₀ 的 X 射 线粉末衍射谱对比,可以发现二者衍射峰的位置与 强度分布都极为相似,晶胞参数也极为相近,从而表 明二者具有相同的晶体结构,都属于四方钨青铜结 构。四方钨青铜结构单位晶胞中含有 10 个[BO₆]八 面体,相互以顶角连接形式形成沿晶体纵轴(*c*轴) 并穿过整个晶体结构的四角、五角和三角间隙。晶 体结构中有两种类型的的 A 晶位: 2 个 A₁ 和 4 个 A₂ 位置,由离子半径较大的低价阳离子所占据,同时还 有两种类型的 B 晶位: 2 个 B₁ 和 8 个 B₂ 位置,通常 由高价、小半径的阳离子占据。此外还有一种较小的 C 晶位,通常是空的^[1]。BasNdTi₃Nb₇O₃₀ 晶体结构中 A 晶位均被 Ba²⁺和 Nd³⁺占据, B 晶位被 Nb⁵⁺和 Ti⁴⁺ 占据, C 晶位是空的, BasNdTi₃Nb₇O₃₀ 属于填满型钨 青铜结构。由于四方钨青铜结构只呈现一次相变,即 铁电相(4 mm 点群)与顺电相(4/mmm 点群)转变, 仅采用 X 射线衍射法很难区分铁电相与顺电相,因 此须采用介电特性测试才能确定 BasNdTi₃Nb₇O₃₀ 的 室温结构类型^[2]。

测试频率为1kHz、10kHz 与1MHz 时 BasNdTi₃Nb₇O₃₀ 陶瓷的介电常数 ε , 随温度变化曲线 见图 2, 随温度升高 BasNdTi₃Nb₇O₃₀ 陶瓷只呈现一次 相变即铁电相(4 mm 点群)与顺电相(4 / mmm 点 群)转变, ε , 在居里温度 T_c处出现极大值, 其1kHz 时 T_c为90℃, 10kHz 时为100℃, 1MHz 时为120℃, 因此可以确定 BasNdTi₃Nb₇O₃₀ 室温时属于四方钨青 铜结构铁电相,空间群为 P4 bm。BasNdTi₃Nb₇O₃₀ 的 居里温度 T_c 随频率的升高而向高温方向移动, 具有 明显的弛豫性铁电体特征。

室温 20℃时, BasNdTi₃NbrO₃₀ 陶瓷的相对介电 常数 ε, 和介电损耗 tanδ 随频率变化曲线分别见图

方

图 2 BasNdTi₃Nb₇O₃₀的介电常数随温度变化曲线

Fig. 2 Curves of dielectric constant with temperature variation for Ba₅NdTi₃Nb₇O₃₀

3 与图 4。当测试频率从 1kHz 增加到 100kHz, Ba₅NdTi₃Nb₇O₃₀ 室温介电常数 ε , 从 489 迅速降低到 390, 介电损耗 tan δ 也从 0.33 减小到 0.031;随着测 试频率增加, ε , 基本保持不变(ε , \approx 385), 介电损耗 tan δ 进一步降低到 0.0032。这是由于 100kHz 以下 Ba₅NdTi₃Nb₇O₃₀ 陶瓷存在较大的松弛极化,因此介电 常数较高,低频松弛极化引起的介电损耗较大。随 频率增加,极化粒子跟不上电场变化,松弛极化的影 响就越小,离子位移极化占主导地位。

图 3 BasNdTi3Nb7O30 的室温介电常数与频率的关系

Fig. 3 Dielectric constant vs frequency for Ba₅NdTi₃Nb₇O₃₀ at room temperature

对比 Neurgaonkar 等人报道的 (1kHz 时) Ba₆Ti₂Nb₈O₃₀介电常数 - 温度曲线^[2], Ba₆Ti₂Nb₈O₃₀的 居里温度 T_c 较高(180℃),介电常数极大值 ε_{max} 都 在 600 附近,而 Ba₅NdTi₃Nb₇O₃₀ 室温介电常数 ε_{RT} 为 489,明显高于 Ba₆Ti₂Nb₈O₃₀。由此可见,Nd 取代部分 Ba 导致铁电居里温度 T_c 下降,而且室温介电常数 ε_{RT} 明显提高。与 Ba₅NdTi₃Nb₇O₃₀(R = Eu, Gd, Sm, Y)

图 4 BasNdTi₃Nb₇O₃₀ 的室温介电损耗与频率的关系

Fig. 4 Dielectric loss vs frequency for Ba₅NdTi₃Nb₇O₃₀ ceramic at room temperature

系列化合物介电特性 (1kHz 时) 相比 (见表 3)^[3-6], 显然 BasNdTi₃Nb₇O₃₀ 的居里温度 T_c 最低,而且室温 介电常数 ε_{RT} 、介电常数极大值 ε_{max} 都明显高于其 它化合物。

表 3 BasRTi3Nb7O30(R = Eu, Gd, Sm, Y)化合物的介电特性

 Table 3
 Comparison of Dielectric Properties of

 Ba₃RTi₃Nb₇O₃₀

R	<i>T</i> , ∕ ℃	Emax	ERT
Y	100	408	368
Nd	90	600	489
Sm	263	273	130
Eu	264	230	135
Gd	282	297	17

3 结 论

采用高温固相反应合成了钨青铜结构新铌酸盐 BasNdTi₃NbrO₃₀。室温时 BasNdTi₃NbrO₃₀ 为四方钨青 铜结构铁电相, 晶胞参数为 a = 1.24424(4) nm, c = 0.39476(2) nm。BasNdTi₃NbrO₃₀ 为弛豫性铁电体, 其 居里温度 *T*。随频率的升高而向高温方向移动, 其中 1kHz 时 *T*。为 90℃; 其室温介电常数与介电损耗随 频率的升高而降低。

参考文献

- [1] Neurgaonkar R. R., Cory W. K. J. Opt. Soc. Am., 1986, 3
 (B), 276.
- [2] Neurgaonkar R. R., Nelson J. G., Oliver J. R. Mater. Res. Bull., 1992, 27(6), 677.
- [3] Singh N. K., Choudhary R. N. P., Panigrahi A. J. Mater. Sci. Letters, 2001, 20, 707.

• 1133 •

・1134・ 无机化	学 学 报 第 18 卷
[4] Singh N. K., Choudhary R. N. P., Panigrahi A. Materials Chemistry and Physics, 2002, 74, 112.	(吴伯麟) et al Fenxi Ceshi Xuebao(Chinese J. Instrumental Analysis), 2001, 20 (3), 46.
[5] ZHANG Hui(张 辉), FANG Liang(方 亮), YUAN Run-	[7] FANG Liang(方 亮), ZHANG Hui(张 辉), YUAN Run- Zhang(直泪音), Vigi, Vibigo, Yughgot, Chinese, I. Scientific
Zhang (及內草) with Huaxue Aueodo (Acta PhysChim. Sin.), 2001, 17, 749.	Instrument), 2001, 22(4), 389.
[6] ZHANG Hui(张 辉), FANG Liang(方 亮), WU Bo-Lin	

Synthesis and Dielectric Properties of a New Niobate Ba₅NdTi₃Nb₇O₃₀

FANG Liang* ZHANG Hui YAN Jun-Bin YANG Wei-Ming

(State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070)

The New Niobate Ba₅NdTi₃Nb₇O₃₀ was synthesized by solid state reaction at 1250°C for 48h. The crystal structure and dielectric properties of Ba₅NdTi₃Nb₇O₃₀ were determined by X-ray powder diffraction and dielectric measurements. The results show that Ba₅NdTi₃Nb₇O₃₀ belongs to ferroelectric phase of tetragonal tungsten bronze structure at room temperature with unit cell parameters: a = 1.24424(4) nm, c = 0.39476(2) nm, calculated density 5.719g \cdot cm⁻³. Ba₅NdTi₃Nb₇O₃₀ belongs to relaxor ferroelectrics. The phase transition temperature (T_c) of Ba₅NdTi₃Nb₇O₃₀ from ferroelectric to paraelectric is found to shift toward higher temperature side at higher frequency, and T_c is 90°C at 1kHz. At room temperature, the dielectric constant (ε_r) and dielectric loss of Ba₅NdTi₃Nb₇O₃₀ decrease with the increase of frequency, and Ba₅NdTi₃Nb₇O₃₀ ceramic have high dielectric constant 489 at 1kHz.

Keywords:

niobate

tungsten bronze structure

XRD

dielectric property