第11期 2002年11月 Vol. 18, No. 11 Nov.,2002

, 研究简报

hanned

密度泛函理论方法研究双核铜化合物的磁性和自旋密度分布

张义权1 罗成林1 余 智*.2

(1南京师范大学物理科学与技术学院,南京 210097)

(2南京大学配位化学国家重点实验室,配位化学国家研究所,南京 210093)

关键词:	密度泛函	自旋离域	自旋密度	分子磁性
分类号:	0614.121	0646.8		

在过去的几十年中,过渡金属配合物分子磁性 的研究受到人们的广泛关注,并取得了很大的进 步^[1-8],其中对双核过渡金属配合物的研究也越来 越多^[1-5]。目前对于分子磁性的定量研究主要是计 算其磁偶合作用常数及自旋密度的分布,磁偶合作 用常数 J 的正负表明了其相互作用是铁磁性的还 是反铁磁性的,绝对值表明了其磁偶合作用的大小, 另外可通过自旋密度的分布来分析其偶合作用的大小, 另外可通过自旋密度的分布来分析其偶合作用的机 理。由于一般磁偶合作用常数很小,相对于分子不同自旋态的能量相差4至7个数量级,有的甚至更 小,因而通过计算分子不同自旋态能量差得出来的 磁偶合作用常数对计算精度要求很高。近年来,用 密度泛函理论并结合由 Noodleman 提出的对称性破 损方法^[9-11]来研究过渡金属配合物的磁偶合作用常 数取得了不少的成功^[1-4]。

铜的一维聚合物 (S = 1/2)的磁性实验研究,因 为对实验数据的计算公式比较成熟,所以在配合物 磁化学研究上具有相当重要和典型的意义。利用对 氨基苯甲酸阴离子 (L)、2,2'- 联吡啶及 4,4'- 联吡 啶可形成具有交替桥联铜的一维链结构聚合物^[12] (见图 1),其实验磁化学性质的研究表明由 L 形成 的桥联产生很强的反铁磁交换 J = -40.63 cm⁻¹(未 发表结果),而 4,4'- 联吡啶由于非共面性仅有微弱 的磁交换作用,因此实际的一维链磁结构可简化为 由 L 配体联结的双核 Cu 化合物。本文在这些研究 的基础上,采用上述理论方法并结合考虑磁轨道的

图 1 Cu₂(2, 2'-bpy)₂(4, 4'-bpy)₂L₂ 化合物的分子结构 Fig. 1 Structure of Cu₂(2, 2'-bpy)₂(4, 4'-bpy)₂L₂ complex

非正交性,通过量子化学密度泛函理论计算出该化 合物的磁偶合作用常数及其自旋密度的分布,分析 其偶合作用的机理。计算原理如下:

在我们所研究的铜双核配合物中,由于铜二价 离子只有一个成单电子,所以系统在偶合后只存在 两种自旋态,三重态 E_{T} 和单重态 E_{S} 。若定义两个磁 载体 S_{1} 和 S_{2} 间的磁相互作用的 Hamiltonian 量为 $H = -2JS_{1} \cdot S_{2}$,那么在计算的分子磁偶合作用常 数中,+2J 就是单重态和三重态能级差,因而 +2J = $E_{S} - E_{T}^{[13]}$ 。在此基础上我们结合参考文献^[11] 提出的方法来计算磁偶合作用常数,并进一步考虑 对称破损态 (BS)下磁轨道的非正交性对磁偶合作 用常数的影响来计算该分子的磁偶合作用常数。其 原理如下:我们设 BS 态的波函数为 ψ_{BS} ,它是纯单 重态波函数 ψ_{S} ,和纯三重态波函数 ψ_{T} 的线性组合 ψ_{BS} ,因此我们可以把 BS 写成如下形式:

第一作者:张义权,男,25岁,硕士研究生;研究方向:过渡金属配合物的分子磁性。

收稿日期:2002-06-04。收修改稿日期:2002-08-28。

国家自然科学基金资助项目(No. G20001004, 19835050)。

^{*} 通讯联系人。E-mail: zhiyu@ netra. nju. edu. cn

第 18 卷

$$\psi_{\rm BS} = a_0 \psi_{\rm S} + a_1 \psi_{\rm T} \tag{1}$$

其中 $a_0^2 + a_1^2 = 1$, ψ_s 、 ψ_T 、 ψ_{BS} 分别是单重态、三重 态和破损态的波函数,因此 BS 态的自旋角动量平 方的期望值:

$$(\psi_{BS}|S^2|\psi_{BS}) = 2 a_1^2$$
 (2)
所以 BS 态的能量 E_{BS} 写成如下形式:

$$E_{BS} = (1 - a_1^2) E_S + a_1^2 + E_T$$
 (3)
把上式变换为:

$$E_{\rm S} - E_{\rm T} = \frac{E_{\rm BS} - E_{\rm T}}{1 - a_{\rm I}^2} = + 2 J$$
 (4)

我们利用商用 Gaussian 98^[14]软件包来进行计 算, 方法采用由 Becke 等提出的混合密度泛函 B3LYP^[15],基函数采用由 Schaefer、Horn 和 Ahlrichs 提出的 SV 和 SVP 基组^[16],与采用由 Hay 和 Wadt 提 出的赝势 LanL2DZ^[17]基组进行对比,在计算分子的 *J*时,把Cu 两边 4,4'-联吡啶中离 Cu 较远的一半 用 CH₃ 代替, CH₃ 与另一半的键长、键角与原先 4,4' - 联吡啶中两部分之间的键长、键角一样(见图 2), 因考虑到 *J* 值对分子结构很敏感,所以我们在截断 时没有对截断部分进行优化,由于截断部分离 Cu

较远,且又不是桥联部分,因此用 CH₃ 代替对结果 影响不大。计算其中相距较近的 Cu1 和 Cu2 之间的 磁交换偶合作用,我们先用 LanL2DZ 基组作用在整 个分子上计算,再用 SVP 基组作用在 Cu上,用 SV 基组作用在其它原子上计算其 J 值和自旋电子分 布,其结果见表 1 和表 2,自旋密度图见图 3,它是采 用 SV/SVP 基组时所计算的自旋密度值画的。

从表 1 我们可看出在我们使用 SV/SVP 基组时 得到的 J 为 – 53.64cm⁻¹,数值较接近实验值,可见

图 2 计算中采用的分子模型结构

Fig. 2 Schematic structure in DFT calculation

表 1 分子 HS 态和 BS 态的能量、S² 本征值和 J 值 Table 1 Calculated HS and BS Energies, Eigenvalues of S² and J Values

basis set —	E/H	<i>E</i> /Hartree		S^2		J/cm ⁻¹	
	HS	BS	HS	BS	computed value	experimental value	
LanL2DZ	- 2908. 30828656	- 2908. 31357717	2.0056	1.0000	- 1161. 6	~ 40. 63	
SV/SVP	- 5794. 48562149	- 5794. 48586577	2.0045	0. 9992	- 53. 64		

表 2 分子的自旋电子分布	
---------------	--

 Table 2
 Spin Electron Distribution for Molecule

spin electron/e					
	SV/SVP			Lan	L2DZ
	HS	BS		HS	BS
Cu1	0. 661443	0. 662340	Cu1	0.614011	0. 638216
Cu2	0.654363	- 0. 649993	Cu2	0. 628237	- 0. 636376
03	0. 086203	0. 085193	03	0. 092944	0. 090642
04	0. 081719	0. 083102	04	0. 090590	0. 090620
N5	0. 072129	0. 080427	N5	0. 078252	0.086858
C6	- 0. 005389	0. 000583	C6	- 0. 008337	0. 000646
C7	- 0. 003498	0. 001909	C7	- 0. 006808	0. 000489
014	0. 084695	- 0. 081520	014	0.088817	- 0. 093206
015	0. 085993	- 0. 089550	015	0. 081407	~ 0. 088539
C16	0. 027985	- 0. 002646	C16	0. 039222	- 0. 000299
C17	0.017806	- 0. 004798	C17	0. 020679	~ 0. 000860
N18	0.008970	0. 001365	N18	0. 001257	0.001102
N19	0. 084612	0. 082463	N19	0. 086374	0. 086762
N29	0. 082192	- 0. 085157	N29	0. 086036	- 0. 081096
N30	0.078268	- 0. 071992	N30	0.086818	- 0. 089612
N31	0.001248	- 0. 003115	N31	0. 001014	- 0. 002058

第11期

• 1149 •

- 图 3 分子 HS 态的自旋密度分布图(上)和分子 BS 态的 自旋密度分布图(下)
- Fig. 3 Spin density maps of HS state (upper figure) and BS state (lower figure) for the molecule

我们的理论和方法都是成功的,其结果令人满意。 另外,计算值与实验值一样为负值,证明整个化合物 为反铁磁交换。从表 2 和图 3 可看出, 无论 HS 态还 是 BS 态,铜上的自旋密度都有部分的离域,在 HS 态,铜上的自旋密度都是正的,由于 Cu 的离域,其 周围配体 O、N 上的自旋密度都是正的, 而在 BS 态, 在靠近自旋密度为负值的 Cu 周围配体原子上的自 旋密度也相应为负值,在靠近自旋密度为正值的 Cu 周围配体上的自旋密度为正值,可见计算的物理图 象非常好。在计算中我们可以看到 HS 态的的期望 值为 2.0045, 与理论值 2 非常接近, 说明所计算的 HS 态为自旋角动量平方算符的本征态, 我们所计算 的 HS 态能量近似为纯三重态能量, 第一激发态的 波函数没有其它能级态的混入,相反,BS态的期望 值近似为1, 这表明 BS 态近似为纯单重态和纯三重 态以几乎相同权重混合组成,可见基态函数受激发 态能级的影响较大,特别是第一激发态。当我们用 LanL2DZ 基组时其计算值为 - 1161.6cm⁻¹, 与实验 值相差很大,这可能是由于 LanL2DZ 是价电子基 组,对 Cu 的内层电子采用赝势来代替¹¹⁷,而我们所 计算的 J 值对计算精度要求很高,特别对磁性离子 Cu 的计算要求更高,因此无论对外层还是内层电子 都应用精确的电子密度来描述,因此我们应用全电 子基组 SV 对 C、H、N、O 非磁性离子原子,和考虑极 化后的 SVP 全电子基组对 Cu 离子来计算整个分子 的 J 值,的确得到和实验值可比拟的结果(见表 1)。

通过上面的计算和分析,我们可以看出密度泛 函理论结合对称性破损方法计算分子的磁偶合作用 常数是一种比较好的手段,计算值与实验值相差不 大,尽管我们在计算中没有考虑分子链中相距较远 的 Cu 与 Cu 之间的偶合作用,且计算又是假设在气 态下进行的,而实验测量是在固态下进行的,因此我 们的计算值还是令人满意的。在我们所研究的配合 物中,Cu 的成单电子是 3 d⁹ 电子,由于 3 d 电子离域 作用大于其极化作用,因此其周围配体的自旋值主 要由 Cu 的自旋离域决定,从表 2 和图 3 我们也能看 出 Cu 的离域作用决定了其周围配体自旋密度的正 负。

参考文献

- Adamo C., Barone V., Bencin A., Totti F., Ciofini I. Inorg. Chem., 1999, 38, 1996.
- [2] Yan F., Chen Z. J. Phys. Chem. A, 2000, 104, 6295.
- [3] Ruiz E., Cano J., Awarez S., Alemany P. J. Am. Chem. Soc., 1998, 120, 11122.
- [4] Bereini A., Totti F., A. Danl C., Doclok., Fantucci P., Barone V. Inorg. Chem., 1997, 36, 5022.
- [5] Ruiz E., Alememy P., Alvarez S. Cano J. J. Am. Chem. Soc., 1997, 119, 1297.
- [6] Denumal M., Novoa J. J. J. Mole. Stru., 2000, 506, 287.
- [7] Cui M., Feng J. K., Zhang H. X., Ge M. F., Sun C. C., Zhang J. P. Synthetic Metals, 1999, 100, 261.
- [8] Deumal M., Novoa J. J., BearPark J. M., Celani P., Olivucci M., Robb A. M. J. Phys. Chem. A, 1998, 102, 8404.
- [9] Noodleman L. J. Chem. Phys., 1981, 74, 5737.
- [10]Noodleman L., Davidson E. R. Chem. Phys., 1986, 109, 131.
- [11] Noodleman L., Case D. A. Adv. Inorg. Chem., 1992, 38, 423.
- [12]YAO Jing-Cai(姚景才), HU Da-Hua(胡大华), HUANG
 Wei(黄 伟), GOU Shao-Hua(苟少华) Wuji Huaxue

·1150· 无机化	学 授 报 第 18 卷
Xuebao (Chinese J. Inorg. Chem.), 2002, 18(1), 34.	Schlegel H. B. et al Gaussian, Inc., Pittsburgh PA, 1998.
[13]HUANG Kun(黄 昆), HAN Ru-Qi(韩汝琦) Solid	[15] Becke A. D. J. Chem. Phys., 1993, 98, 5648.
Physics (固体物理), Beijing: High Education Press,	[16] Schaefer A., Horn H., Ahlrichs R. J. Chem. Phys., 1992.
1988 , p415.	97 , 2571.
[14] Gaussian 98 (Revision A. 9), Frisch M. J., Trucks G. W.,	[17] Hay P. J., Wadt W. R. J. Chem. Phys., 1985, 82, 299.

The Studies of Density Functional Theory on Magnetism and Spin Density Distribution of a Binuclear Copper Complex

ZHANG Yi-Quan¹ LUO Cheng-Lin¹ YU Zhi*,²

(¹ College of Physical Science and Technology, Nanjing Normal University, Nanjing 210097)

(² State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Nanjing University, Nanjing 210093)

Magnetic coupling constants J between Cu ions and spin density map for a binuclear complex $Cu_2(2, 2'-bpy)_2(4, 4'-bpy)_2L_2$ have been calculated by the combination of the broken symmetry approach with the spin project method under the DFT framework and the effect of nonorthogonality between magnetic α and β orbitals in the broken symmetry solution. The result indicates that using SV/SVP basis sets in the calculation of Gaussian 98 is much better than using LanL2DZ pseudo-potential function in above system. It is interesting that calculated J value is quite near to the experimental value in the studies of magnetic susceptibility.

Keywords:

density functional theory

spin delocalization

ation spin density

molecular magnetism