第 12 期 2002 年 12 月 Vol. 18, No. 12 Dec., 2002

研究简报

$[Ni(en)_3]_4[HV^{W}_{12}V^{V}_6O_{42}(PO_4)]$ 复合物的合成及晶体结构

郑寿添 曾庆新 林之恩 杨国昱*

(中科院福建物质结构研究所,结构化学国家重点实验室,福州 350002)

关键词: 水热合成 多氧钒酸盐 晶体结构 分类号: 0611.4

金属-氧簇合物不仅在许多均相和异相的反应 中有潜在的应用。而且还有可能形成一些特殊功能 的材料, 已经引起了从事生物无机和磁化学等科学 家的兴趣^[1,2]。其中具有球壳形结构的{V₁₈O₄₂},通式 为 $M_x[H_yV_{18}O_{42}(E)]$ 的簇合物在国内外已有一些报 道、如 $(N_2H_5)_2$ [Zn₃V₁₈O₄₂ (SO₄) (H₂O)₁₂] · 24H₂O^[3], $\{[Cu(1, 2-pn)_2]_4[V_{18}O_{42}(H_2O)]\}$ · 8 $nH_2O^{(4)}$,其中由 于还原程度的不同, {V18O42} 的钒的混合价态组成 有多种多样。在已见报道中金属离子 M 主要是碱 金属和碱土金属^[2],也有一些水配位的过渡金属 阳离子,如[Cu(1, 2-pn)₂]^{2+[4]}、[Mn(H₂O)₄]^{2+[5]}、 [Fe(H₂O)₄]^{2+[5]}、[Zn(H₂O)₄]^{2+[6]}等; 客体 E 主要有 卤素、 NO_3^- 、 NO_2^- 、 $HCOO^-$ 、 SH^- 、 SO_4^{2-} 、 H_2O 、 OH^- 、 VO43-等^[2,4,7,8]。对于过渡金属与有机胺配位形成 配位阳离子,再与团簇 { $[V_{18}O_{42}(E)]$ } 形成的复合 物则报道极少^[9]。本文报道了一种新的复合物 [Ni(en)₃]₄[HV^V₁₂V^V₆O₄₂(PO₄)]的合成及晶体结 构。

1 实验部分

1.1 仪器与试剂

所用试剂均采用分析纯, V₂O₅ 为上海试剂三厂 产品, Ni(CH₃COO)₂·2H₂O 为中国医药(集团)上海 化学试剂公司产品,乙二胺(en)为福建师范大学附 属试剂厂产品,H₃PO₄ 为汕头市光华化学厂产品。

单晶衍射数据是在 Siemens SMART-CCD 面探

衍射仪上收集; 红外光谱表征的仪器为 FT-IR Magna 750 红外光谱仪, KBr 压片; C、H、N 的元素分析是在 PE 2400 II 元素分析仪上测得; P, V, Ni 等的含量在 Baird-ps-III 等离子发射光谱仪上测得。

1.2 **化合物的制备**

采用水热反应,将 H₂O, H₃PO₄, en, V₂O₅和 Ni(CH₃COO)₂ · 2H₂O 按物质的量比为 11112: 17: 16 :8: 2 混合,充分搅拌后调节 pH = 8.5,封入 30mL 的 内衬聚四氟乙烯不锈钢反应釜中,在 160℃下晶化 3d,缓慢冷却至室温、去离子水漂洗、干燥,得到黑色 四方的大单晶,产率较低。元素分析结果(理论 值,%): C: 10.87(10.90); H: 3.66(3.70); N: 12.74 (12.80); P: 1.18(1.17); V: 34.71(34.78); Ni: 8.90 (8.94)。

1.3 晶体结构的测定

选取 0. 24 × 0. 20 × 0. 04mm 的单晶用于衍射实 验,石墨单色化 Mo Ka 射线 (λ = 0. 71073Å),室温 293K, φ/ω 扫描, 3. 31° < θ < 25. 04°,数据经 Lp 和 经验吸收因子校正。用直接法得到金属原子坐标、其 余非氢原子坐标用差 Fourier 合成获得,对全部非 碳、氢原子坐标及各向异性热参数进行全矩阵最小 二乘法修正(SHELX-97)。测量衍射点数 8829,独立 衍射点数 501[R(int) = 0.0801],可观察衍射点数 369($I > 2\sigma(I)$),化合物的结晶学数据列于表 1。

IR 谱图峰归属: $1030 \text{ cm}^{-1} \nu_{p-0}$, $974 \text{ cm}^{-1} \nu_{x=0}$. 658 cm⁻¹、719 cm⁻¹、833 cm⁻¹ ν_{v-0-v} , 1578 cm^{-1} .

收稿日期:2002-05-10。收修改稿日期:2002-10-08。

国家自然科学基金资助项目(No. 20171045)、国家财政部和中科院"引进国外杰出人才"专项基金资助项目及福建省自然科学基金资助项目(No. E0210029)。

^{*}通讯联系人。E-mail: ygy@ ms. fjirsm. ac. cn

第一作者:郑寿添,男,24岁,硕士研究生;研究方向:金属-氧簇化学。

· 1234 ·

第18卷

振动[2,10]。

CCDC: 185574°

表 1 化合物的晶体学数据

empirical formula	C24H97N24Ni4O46PV18
V∕ų	5275.38(10)
crystal system	cubie
Z	2
μ∕ mm ^{- 1}	2. 297
space group	Im 3m
$D_{c} \neq (g \cdot cm^{-3})$	1. 663
a∕Å	17.4081(2)
F(000)	2636
crystal size	0. $24 \times 0.20 \times 0.04$ mm
data/restraints/parameters	501/2/34
goodness-of-fit on F^2	1. 089
final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0420$, w $R_2 = 0.1055$
largest diff. peak and hole	0. 449 and -0. 826e · Å ³

2 结果与讨论

图 2(A) 和图 2(B) 为复合物的阴、阳离子结构 和单胞堆积图。主要键长及键角见表 2。

复合物 [Ni(en)₃]₄[HV^N₁₂V^V₆O₄₂(PO₄)] 是由簇 阴离子 [HV₁₈O₄₂(PO₄)]⁸⁻和配位阳离子 [Ni(en)₃]²⁺ 构成。在每个簇阴离子的周围分布着四个配位阳离 子,阴阳离子间通过静电作用相结合。连接这四个 配位阳离子中的镍离子可以构成一个四面体,簇阴 离子处于四面体的中心,如图 2(C)所示。阳离子是 由 3 个 en 分子与 Ni²⁺配位形成八面体结构, Ni-N 的 键长为 2. 09(1) Å,四个配位阳离子具有构象异构, 有两个为 Δ 构象,另两个为 Λ 构象。在已报道的类

- 图 2 [Ni(en)₃]₄[HV^V₁₂V^V₆O₄₂(HPO₄)]化合物的阴阳 离子结构图(A)、单胞堆积图(B)和多面体图(C)
- Fig. 2 (A) The structure of anions and cations of the $[Ni(en)_{3}]_{4}[HV^{N}_{12}V^{V}_{6}O_{42}(PO_{4})]; (B) The packing diagram of the [Ni(en)_{3}]_{4}[HV^{N}_{12}V^{V}_{6}O_{42}(PO_{4})]; (C) Polyhedral representation of the$ $[Ni(en)_{3}]_{4}[HV^{N}_{12}V^{V}_{6}O_{42}(PO_{4})]$

似结构中,配位阳离子的配体主要是简单的水分子,由过渡金属与有机配体形成的配位阳离子的报 道较少见^[9]。

簇阴离子 [HV[№]₁₂V[♥]₃O₄₂(PO₄)]⁸⁻ 是类球形的笼 状结构。由于磷上的氧处于无序状态,使得簇笼中 PO₄ 基团存在两套四面体构型。处于两套四面体顶 点的氧原子构成了一个立方体,P原子处于立方体 郑寿添等: {Ni(en)3]4 [HV^N12V^V6O42(PO4)]复合物的合成及晶体结构

表 2 化合物的主要键长键角

· 1235 ·

$P-O(4) \times 8$	1.503(17)	V(1)-O(2)	1.619(5)	$V(1)-O(1) \times 4$	1.918(1)
V(2)-O(3)	1.588(8)	$V(2)-O(1) \times 4$	1.928(4)	Ni-N × 6	2.087(11)
$N-C \times 2$	1.433(16)	$C-C \times 2$	1.53(5)		
O(4A)-P-O(4)	180.0(6)	O(4A)-P-O(4B)	70.529(1)	O(4)-P-O(4B)	109. 471(5)
O(2)-V(1)-O(1D)	104.64(10)	O(1D)-V(1)-O(1E)	82.9(2)	O(1D)-V(1)-O(1F)	89.7(2)
O(1)-V(1)-O(1F)	150.71(19)	O(3)-V(2)-O(1)	111.35(11)	O(1E)-V(2)-O(1)	137.3(2)
O(1E)-V(2)-O(1C)	82.38(7)				

Symmetry transformations used to generate equivalent atoms: A: -x + 1, -y + 1, -z + 1: B: x, -y + 1, -z + 1;

C: -x + 1, y, z; D: x, -y + 1, z; E: z, -x + 1, y;

F: z, -x + 1, y.

的中心, 无序的氧原子处于立方体的八个顶点位置, P-O(4) 键具有合理的键长 1.503(17) Å。簇阴离子 中,在化学和晶体学上独立的原子有 2 个 V,四个 O,一个 Ni和一个 P。另有一个 N和一个 C 原子。O (1) 是三桥氧(O_{3b});O(2),O(3)分别是 V(1),V(2) 的端氧(O₄);O(4)为磷氧四面体中的氧。簇阴离子由 18 个 VO₅四方锥通过共边和共顶点方式相联结而 成,其中含有 V(2)原子的 VO₅四方锥有 6 个。V(1), V(2) 原子各与一个端氧(O₄),四个三桥氧(O_{3b})相 连,与端氧相连的钒氧键长分别为 1.619(18)Å, 1.588(11)Å,与三桥氧的相连的钒氧键长分别为 1.918(8)Å,1.928(2)Å。V(1)原子与磷上的 O(4)间 的距离为 2.553Å,说明 O(4)与 V(1)间的成键作用 很弱。

应用键价公式 $s = \exp[(r_0 - r)/B]^{[11]}, B =$ 0.37、且对 V(1) 和 V(2) 分别采用 ro = 1.784 和 1.803, 计算得到的 V(1) 和 V(2) 的价态分别为 4.3 (小于 4.5)和 4.6(大于 4.5),同时考虑到 V(1)和 V (2)为两个不同的位点,因而把 V(1)和 V(2)分别指 认为+4、+5价。如果考虑的更复杂些,根据价键计 算公式 $s = (R/R_0) - N(N = 5.2, R_0 = 1.770)^{[12]}$ 并 同时考虑到 V(1) 与 O(4) 微弱的成键作用,得到 V(1), V(2)的价态分别为 4.37, 4.32, 说明 V(1) 和 V(2) 位点均具有混合价态,其总价态为+78,对应 12个四价钒和6个五价钒,这虽和我们指认V(1)和 V(2) 为+4和+5价得到的分子式一致,但此时结 构中的所有钒原子均为混合价态。因此说、对于混 合价化合物中各原子价态的指认,有时也是很困难 的,目前也只是从电荷平衡的角度,由经验的键价公 式进行大概的估算。但无论怎样估算,经对称操作 产生的12个V(1)等效原子的价态应是相同的,而6

个 V(2)等效原子的价态也应是相同的。

在反应体系中,有机胺不仅充当配体,还起还原 剂作用,使 V^v还原至 V^N,由化合物呈黑色也说明该 化合物是混合价态,这是因为化合物中+5 价的钒 原子被还原成+4 价后,+5 价和+4 价的钒原子间 存在着金属间的 d-d电荷跃迁,从而导致化合物的 颜色加深。由于 Ni²⁺离子与3 个 en 配位,因而仅得 到了分立的结构。如果适当的调整 Ni 与 en 的配比. 可以获得以 Ni(en)₂²⁺为桥联基团并将[HV^N₁₂V^{*}₆O₄₂ (PO₄)]建筑单元连接成一、二及三维骨架结构^[13]. 对于获得的具有孔道结构的化合物,还可以填充一 些阳离子,如水分子和肼阳离子等,这些阳离子还可 能被其它阳离子所交换,这亦是当前研究的热点之 -^[4.8]。

参考文献

- [1] Rehder D. Angew. Chem., Int. Ed. Engl., 1991, 30, 148.
- [2] Muller Axhim., Roberta Sessoli. Inorg. Chem., 1997, 36, 5239.
- [3] Khan M. I., Yohannes E. Chem. Commun., 1999, 1, 23.
- [4] LIN Bi-Zhou(林碧洲), LIU Shi-Xiong(刘世雄) Gaodeng Xuexiao Huaxue Xuebao(Chem. J. Chinese Universities).
 2002, 23(4), 535.
- [5] Khan M. I. Crystal. Engineering., 1999, 2, 2.
- [6] XU Lin(许林), WANG En-Bo(王恩波), HU Chang-Wen (胡长文) Wuji Huaxue Xuebao(Chinese J. Inorg. Chem.),
 2000, 16(2), 218.
- [7] Kawata S., Adachi K. J. Chem. Soc., Dalton Trans., 2000, 14, 2409.
- [8] Hitoshi Kumagai., Masashi Arishima. Inorg. Chem., 2002, 41, 1989.

•	1236	•
	1000	

[9] ZENG Qing-Xin(曾庆新),XU Ji-Qing(徐吉庆),YANG	[
Guo-Yu(杨国昱) Gaodeng Xuexiao Huaxue Xuebao(Chem.	{
J. Chinese Universities), 2001, 22(11), 1800.	

- [10] Müller Axhim., Meyer Jochen Chem. Eur. J., 1998, 4 (8), 1388.
- [11]Brown I. D., Altermatt D. Acta Cryst., 1985, B41, 244.
 [12]Brown I. D. Structure and Bonding in Crystals, Academic

Press: New York, 1981, p18.

[13]YANG Guo-Yu(杨国昱) Thesis for the Doctorate of Jilin University(吉林大学博士论文), 1998.

Synthesis and Crystal Structure of Complex $[Ni(en)_3]_4[HV^{V}_{12}V^{V}_6O_{42}(PO_4)]$

ZHENG Shou-Tian ZENG Qing-Xin LIN Zhi-En YANG Guo-Yu*

(Coordination and Hydrothermal Chemistry Group, State Key Laboratory of the Structural Chemistry, Fujian Institurte of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002)

A new complex $[Ni(en)_3]_4[HV_{12}V_6O_{42}(PO_4)]$ has been hydrothermally synthesized and characterized by X-Ray diffraction, IR and Elemental analysis. Single crystal X-ray analysis indicates that this compoud crystallizes in cubic system, space group $Im \ \bar{3}m$ with a = 17.4081(2) Å, V = 5275.38(10) Å³, R = 0.0420, wR = 0.1055. Z = 2, $D_c = 1.663g \cdot cm^{-3}$, $\mu = 2.297 mm^{-1}$, F(000) = 2636. The crystal structure consists of $[Ni(en)_3]^{2+}$ cations and $\{HV_{18}O_{42}(PO_4)\}^{8-}$ cluster anion which construct from 18 $\{VO_5\}$ square pyramids. The VO₅ pyramids joined each other to form a $\{V_{18}O_{42}\}$ cage hosting a tetrahedral $\{PO_4\}^{3-}$ moiety with disordered oxygen atoms. CCDC: 185574.

Keywords: hydrothermal synthesis polyoxovanadate crystal structure