Vol. 18, No. 12 Dec., 2002

# 研究简报

## ZrWO<sub>4</sub>F<sub>2</sub>的前驱物法合成和表征

吴 燕 赵新华\*.1 马 辉2

(<sup>1</sup>北京师范大学化学系,北京 100875)(<sup>2</sup>北京师范大学分析测试中心,北京 100875)

关键词: 错钨氟氧化合物 ZrWO<sub>4</sub>F<sub>2</sub> 前驱物法合成
 分类号: 0614,41<sup>+</sup>2 0614,61<sup>+</sup>3 0613,41

ZrW<sub>2</sub>O<sub>8</sub> 是一个具有独特的结构类型和具有负 膨胀系数的化合物。由于它在 0K ~ 1050K 和 1380 ~ 1530K 如此宽的温度范围内表现的各向同性的热收 缩性质,近几年引起人们的极大重视<sup>[1,2]</sup>。由于 ZrW<sub>2</sub>O<sub>8</sub> 在技术领域的重要性,目前已有包括共沉淀 法,溶胶 - 凝胶法,水热法,自燃烧法,前驱物热分解 法和直接法等多种合成方法<sup>[3]</sup>。Mo 掺杂形成的固溶 体,可以改善热收缩材料的性质。我们在成功地用 水合前驱物热分解法制备了 ZrW<sub>2-x</sub>Mo<sub>x</sub>O<sub>8</sub> 之后<sup>[4]</sup>, 又试图用过氧络合物的前驱物方法制备 Ti 掺杂的 钨酸锆化合物。我们以氢氟酸和氟化铵为氟源作为 阴离子电荷补偿杂质,经过反复实验,没有得到预期 化合物,却最终以氢氟酸为氟源制备了锆钨氟氧化 合物的纯相。

由于氟原子与氧原子的相似性,过渡金属的 氟氧化合物在结构上与过渡金属的氧化物有一定 的相关性。P. Hagenmuller<sup>[5]</sup>综述了过渡金属氟 氧化合物的结构和性质。Ismailzade 和 Ravez报 道 了  $Bi_2TiO_4F_2^{[6]}$ 的晶体结构。钨和钼形成通式为  $A_3MO_xF_{6-x}(A = IA 元素, M = V, Ti, Nb, W, Mo)$ 的 化合物<sup>[7]</sup>也有报道。本文首次报道了  $ZrWO_4F_2$  氟氧 化合物的制备并初步地对它进行了元素组成测定和 X 光粉末衍射结构分析。

## 1 实验部分

1.1 试剂及仪器

H<sub>2</sub>WO<sub>4</sub> 为化学纯; ZrOCl<sub>2</sub> · 8H<sub>2</sub>O, 40% 氢氟酸和 30% 双氧水均为分析纯。30% 双氧水使用前在真空 条件下,置于 P<sub>2</sub>O<sub>5</sub> 干燥剂的保干器中浓缩,并使用 容量分析方法测定其浓度。主要分析测试仪器为:日 本理学 Dmax-3A X-射线多晶粉末衍射仪; Cu Kα 辐 射, Ni 滤波片。法国 Jyultima 电感耦合等离子体发射 光谱仪 (ICP)。 Vg Escalab Mk-II 多功能光电子能谱 仪, Mg Ka 激发源。美国 TA2100 热分析仪,空气气 氛,升温速度 10℃ · min<sup>-1</sup>。

- 1.2 ZrWO<sub>4</sub>F<sub>2</sub>的合成
  - 1.2.1 以氢氟酸为氟源

取 1.68g H<sub>2</sub>WO<sub>4</sub> 溶于 20mL 31.6% 的 H<sub>2</sub>O<sub>2</sub> 溶 液中,60℃油浴,搅拌,加热 6h,抽滤除去不溶物。 ICP 法测定溶液中 W 的物质的量为 4×10<sup>-3</sup>mol。取 相等物质的量的 ZrOCl<sub>2</sub> · 8H<sub>2</sub>O 1.29g 溶于 8mL H<sub>2</sub>O 中,溶解后加入 1.5mL 30% 的 H<sub>2</sub>O<sub>2</sub> 和 1.5mL 氢氟 酸。将上述两溶液按照 W 物质的量: Zr 物质的量 = 1:1 混合,得到过氧络合物的浅黄色前驱物溶液、溶 液的氢氟酸浓度为 1.5 ~ 1.6mol · L<sup>-1</sup>。将溶液自然 晾干后,得到橙黄色固体前驱物(1)。将固体前驱物 (1) 研细后,在 580℃灼烧 20min,得到白色粉末状 ZrWO<sub>4</sub>F<sub>2</sub>。

1.2.2 以氟化铵为氟源

收稿日期:2002-07-04。收修改稿日期:2002-08-23。

国家自然科学基金资助项目(No. 29871006)。

<sup>\*</sup>通讯联系人。E-mail: xinhuaz@bnu.edu. cn

第一作者:吴 燕,女,24岁,硕士研究生;研究方向:固体无机化学。

取 4.75g H<sub>2</sub>WO<sub>4</sub> 溶于 40mL H<sub>2</sub>O<sub>2</sub> 溶液中。取 2.87g ZrOCl<sub>2</sub> · 8H<sub>2</sub>O 溶于 50mL H<sub>2</sub>O 中,再在 ZrOCl<sub>2</sub> 溶液 中加入 2.5mL 30%的 H<sub>2</sub>O<sub>2</sub> 和 2.22g NH<sub>4</sub>F。其它操 作与(1)相同。将上述两溶液按照 W 物质的量:Zr 物 质的量 = 2:1 混合,将溶液自然晾干后,得到橙黄色 固体前驱物(2)。将固体前驱物(2)研细后,进行热 分析和相分析。

在上述溶液中都混有 0.4mol% 的 TiCl<sub>4</sub>-H<sub>2</sub>O<sub>2</sub> 溶液。

## 2 结果与讨论

### 2.1 ZrWO<sub>4</sub>F<sub>2</sub> 的组成分析

将 0.0120g ZrWO₄F<sub>2</sub> 在 420℃ 与 0.108g NaOH 熔融。熔融的样品依次用 H<sub>2</sub>O,浓 HNO<sub>3</sub>,和浓 H<sub>2</sub>SO₄ 浸取,最后熔融物全部溶解,得到浸取液 a, b, c。用 ICP 方法分别测定浸取液 a, b, c 中金属离子浓度, XPS 方法测定 ZrWO₄F<sub>2</sub> 固体样品的非金属元素的组

成。XPS 和 ICP 分析表明, ZrWO4F2 中不含氯元素和 钛元素。这可能是由于制备加热过程中氯元素和钛 元素挥发。综合上述分析结果,确定目标产物的化学 式为 ZrWO4F2(分析结果列于表 1)。

#### 2.2 ZrWO4F2 的结构表征

ZrWO<sub>4</sub>F<sub>2</sub> 中掺入 SiO<sub>2</sub> 做内标,测定其 XRD 图 谱。将 50°以前的 21 个衍射角度(2 $\theta$ /(°))值用 SOS1 程序校正后全部输入 TREOR 程序<sup>[8]</sup>中进行拟合计 算,全部衍射线实现了指标化,品质因子 *M*(21) = 3. *F*(21) = 4。按照拟合结果建议的正交晶系和指标 化的系统消光规律,初步判断晶体空间群为 *D*<sub>2</sub><sup>2</sup> = *P*2<sub>1</sub>22。根据指标化的拟合结果和 *D*<sub>2</sub><sup>2</sup>-*P*2<sub>1</sub>22 空间 群,进一步用 SOS2 程序对衍射图的全部衍射线进 行拟合和精修,所得晶胞参数为 *a* = 15. 32(2) Å. *b* = 13. 877(7) Å, *c* = 8. 42(2) Å,指标化结果见表 2。

表 1 ZrWO<sub>4</sub>F<sub>2</sub>组成分析 Table 1 Composition of ZrWO<sub>4</sub>F<sub>2</sub>

|                           | metal quantities of ZrWO4F2 determined by ICP |                            |                                 |                          |               |  |  |  |  |
|---------------------------|-----------------------------------------------|----------------------------|---------------------------------|--------------------------|---------------|--|--|--|--|
|                           | metal                                         | concentration/ppm          | quantity of substance/mol       |                          |               |  |  |  |  |
| solution (a)              | W                                             | 115                        | 5. $75 \times 10^{-3}$          | 3. 14 × 10 <sup>-5</sup> |               |  |  |  |  |
|                           | Zr                                            | 0.11                       | 5. 5 × 10 <sup>-6</sup>         | 6. $0 \times 10^{-8}$    |               |  |  |  |  |
| solution (b)              | W                                             | 0. 548                     | 27. 4 × 10 <sup>-</sup> °       | 1. 49 × 10 <sup>-7</sup> |               |  |  |  |  |
|                           | Zr                                            | 59. 1                      | $2.95 \times 10^{-3}$           | 3. $24 \times 10^{-5}$   |               |  |  |  |  |
| solution (c)              | W                                             | 0. 101                     | 5. 05 × 10 <sup>-5</sup>        | 2. $74 \times 10^{-8}$   |               |  |  |  |  |
|                           | Zr                                            | 0. 785                     | 39. 3 × 10 <sup>-6</sup>        | 4. 30 × 10 <sup>-7</sup> |               |  |  |  |  |
|                           |                                               | ratio of non-metal e       | elements of ZrWO4F2 by XPS      |                          |               |  |  |  |  |
|                           | peak position/eV                              | intensitiy                 | sensitivity factor of atoms     | ratio of atoms           | ratio of mass |  |  |  |  |
| O <sup>2 -</sup>          | 532                                           | 15720                      | 0.670                           | 7                        | 2             |  |  |  |  |
| F -                       | 685.5                                         | 9876                       | 1.000                           | 3                        | 1             |  |  |  |  |
|                           | composition of                                | ZrWO4F2 combining the resu | lts from ICP and XPS (theoretic | al)                      |               |  |  |  |  |
|                           | W                                             | Zr                         | 0                               | F                        |               |  |  |  |  |
| mass∕ ×10 <sup>-3</sup> g | 5.78(5.86)                                    | 2.99(2.90)                 | 2.15(2.04)                      | 1.08(1.21)               |               |  |  |  |  |

表 2 ZrWO<sub>4</sub>F<sub>2</sub> 的指标化结果

Table 2 Index Result of XRD Pattern of ZrWO<sub>4</sub>F<sub>2</sub>

| hkl | $2\theta/(\circ)(\det)$ | $2\theta/(^\circ)({\rm calc.})$ | d / Å(det.) | d / Å(calc.) | <i>I</i> / <i>I</i> <sub>0</sub> | hkl | $2\theta/(\circ)(\det)$ | $2\theta/(\circ)$ (calc. ) | $d \neq \text{Å}(\det)$ | $d \neq Å$ (calc. ) | $I / I_{\rm d}$ |
|-----|-------------------------|---------------------------------|-------------|--------------|----------------------------------|-----|-------------------------|----------------------------|-------------------------|---------------------|-----------------|
| 200 | 11.56                   | 11.55                           | 7.66        | 7.66         | 7                                | 050 | 32.21                   | 32. 23                     | 2.78                    | 2.78                | 6               |
| 120 | 14.00                   | 14.00                           | 6.32        | 6.32         | 15                               | 422 | 34.23                   | 34.17                      | 2.62                    | 2.61                | 14              |
| 220 | 17.25                   | 17.23                           | 5.14        | 5.14         | 21                               | 440 | 34.91                   | 34.87                      | 2.57                    | 2.57                | 17              |
| 012 | 22.03                   | 22.06                           | 4.03        | 4.03         | 70                               | 251 | 36.04                   | 36.01                      | 2.49                    | 2.49                | 11              |
| 400 | 23.18                   | 23.21                           | 3.83        | 3.83         | 9                                | 502 | 36.20                   | 36.24                      | 2.48                    | 2.48                | 16              |
| 212 | 24.91                   | 24.96                           | 3.57        | 3.57         | 4                                | 360 | 42.88                   | 42.89                      | 2.11                    | 2.11                | 19              |
| 330 | 25.93                   | 25.97                           | 3. 43       | 3.43         | 100                              | 542 | 44.94                   | 44. 93                     | 2.01                    | 2.01                | 12              |
| 140 | 26.27                   | 26. 32                          | 3.39        | 3.38         | 5                                | 071 | 47.03                   | 47.06                      | 1. 93                   | 1. 93               | 8               |
| 240 | 28.21                   | 28. 22                          | 3.16        | 3.16         | 60                               | 270 | 47.37                   | 47.33                      | 1.92                    | 1. 92               | 27              |
| 141 | 28.39                   | 28.41                           | 3.14        | 3.14         | 57                               | 603 | 48.16                   | 48.16                      | 1.89                    | 1. <b>89</b>        | 15              |
| 402 | 31.63                   | 31. 57                          | 2.83        | 2.83         | 6                                |     |                         |                            |                         |                     |                 |

## 2.3 固体前驱物的热分解过程与 ZrWO₄F₂ 的制备 条件

XRD 相分析表明,固体前驱物(1)的衍射峰明
 显宽化,主要衍射峰可以归属于 Zr<sub>2</sub>F<sub>8</sub>(H<sub>2</sub>O)<sub>6</sub>, WO<sub>3</sub>・
 2H<sub>2</sub>O 和 WO<sub>2</sub>Cl<sub>2</sub>。因此固体前驱物(1)是由超细的上
 述三种化合物混合组成(见表 3)。

综合对固体前驱物 (1) 由室温至 200℃的一段 温度区间反应热分析谱图 (见图 1) 的分析和 200℃ 保温样品的 XRD 相分析为  $ZrF_4 \cdot H_2O(JCPDS:$ 9-118) 和 WO<sub>3</sub> · H<sub>2</sub>O(JCPDS: 20-1324) 的结论表明 (见图 2), 150℃以前温度区间的连续失重 (3.4% + 7.8%) 和对应于 113℃强烈的吸热过程使前驱 物 (1) 连续地发生了如下反应(理论失重量为 12.7%):

 $Zr_2F_8(H_2O)_6 + WO_3 \cdot 2H_2O + WO_2Cl_2$ 

 $= 2ZrF_4 \cdot H_2O + 2WO_3 \cdot H_2O + 3H_2O(g) + 2HCl(g)$ 

热分析表明在 150℃~610℃之间样品的连续 失重(失重 13.9%)及对应于此温度区间的一个吸





热峰(297℃)和三个放热峰(240℃,363℃,469℃)反 映了在这个温度区间发生了剧烈的新的化合物的 生成与分解的复杂过程。最终在 605℃生成了 ZrWO<sub>4</sub>F<sub>2</sub>(理论失重量为 13.3%):

 $ZrF_4 \cdot H_2O + WO_3 \cdot H_2O$ = ZrWO\_4F\_2 + H\_2O(g) + 2HF(g)

## 表 3 固体前驱物(1)的相分析结果

 Table 3 Result of Phase Analysis of the XRD Pattern of Solid Precursor (1)

| solid precursor(1) |       | $Zr_2F_8(H_2$ | 0) JCPDS: | 32-1491 | WO <sub>3</sub> · 2H <sub>2</sub> O JCPDS: 18-1419 WC |       |              | WO2Cl2 JCPDS: 23-1450 |                                  |     |
|--------------------|-------|---------------|-----------|---------|-------------------------------------------------------|-------|--------------|-----------------------|----------------------------------|-----|
| 20                 | d∕Å   | $I \neq I_0$  | d∕Å       | I/ Io   | hkl                                                   | d∕Å   | $I \neq I_0$ | d∕Å                   | <i>I</i> / <i>I</i> <sub>0</sub> | hkl |
| 12.70              | 6.96  | 79            |           |         |                                                       | 6.80  | 100          | 6.95                  | 35                               | 020 |
| 14.60              | 6.06  | 74            | 6.030     | 72      | 010                                                   |       |              |                       |                                  |     |
| 16.40              | 5.40  | 70            | 5.378     | 60      | 110                                                   |       |              |                       |                                  |     |
| 17.54              | 5.05  | 86            | 5.038     | 100     | 011                                                   |       |              |                       |                                  |     |
| 18.23              | 4.85  | 60            | 4. 833    | 69      | 101                                                   |       |              |                       |                                  |     |
| 20.57              | 4.32  | 30            | 4.304     | 39      | 011                                                   |       |              |                       |                                  |     |
| 22. 25             | 3.99  | 10            | 3.976     | 8       | 111                                                   |       |              |                       |                                  |     |
| 23.90              | 3.72  | 93            |           |         |                                                       |       |              | 3.70                  | 100                              | 011 |
| 24.56              | 3.62  | 63            | 3.618     | 44      | 101                                                   | 3.67  | 80           |                       |                                  |     |
| 25.71              | 3.46  | 59            | 3. 456    | 24      | 120, 102                                              | 3.37  | 30           |                       |                                  |     |
| 27.17              | 3. 28 | 100           | 3. 221    | 2       | 111                                                   | 3.21  | 100          |                       |                                  |     |
| 28.35              | 3.15  | 17            | 3. 142    | 6       | 110                                                   |       |              |                       |                                  |     |
| 30.25              | 2.95  | 13            | 2.954     | 8       | 021                                                   | 3.00  | 10           |                       |                                  |     |
| 30. 76             | 2.90  | 20            | 2.901     | 22      | 012                                                   |       |              |                       |                                  |     |
| 32. 24             | 2.77  | 15            | 2.775     | 11      | 112, 112                                              |       |              | 2.733                 | 20                               | 101 |
| 33. 29             | 2.69  | 22            | 2,687     | 15      | 221,220                                               |       |              |                       |                                  |     |
| 34.17              | 2.62  | 34            | 2.630     | 5       | 111                                                   | 2.58  | 50           |                       |                                  |     |
| 35.39              | 2.53  | 31            | 2.531     | 9       | 122, 022                                              | 2.51  | 30           |                       |                                  |     |
| 36. 69             | 2.45  | 17            | 2.440     | 8       | 211                                                   | 2.43  | 20           |                       |                                  |     |
| 37.91              | 2.37  | 6             | 2.377     | 7       | 222, 221                                              |       |              |                       |                                  |     |
| 40.49              | 2.23  | 16            | 2.225     | 14      | 131, 113                                              | 2.27  | 10           |                       |                                  |     |
| 41.95              | 2.15  | 8             | 2.149     | 9       | 231, 120                                              |       |              |                       |                                  |     |
| 43.02              | 2.10  | 8             | 2.102     | 6       | 112                                                   | 2.07  | 30           |                       |                                  |     |
| 43.64              | 2.01  | 9             | 2.010     | 1       | 030                                                   |       |              |                       |                                  |     |
| 46.48              | 1.95  | 20            | 1.948     | 14      | 103, 123                                              | 1. 94 | 70           | 1.921                 | 10                               | 002 |
| 48.11              | 1.89  | 17            |           |         |                                                       | 1.85  | 10           |                       |                                  |     |



图 2 固体前驱物(1)在 200℃保温所得样品的 XRD 图谱





- 图 3 固体前驱物(2)在 753K (a)和 853K (b)保温的 XRD 图谱; (c)为固体前驱物(1)在 853K 保温 20min 的 ZrWO4F2 纯相的 XRD 图谱 在(a)和(b)中的▽,表示未知相,其衍射峰强度随温 度升高而减小
- Fig. 3 XRD Patterns of precursor (2) annealing at 753K (a), 853K (b), and the XRD pattern of phase pure ZrWO<sub>4</sub>F<sub>2</sub> (c) that was obtained by annealing the precursor (1) at 853K for 20min. ⊽ in (a) and (b) denotes peaks of unknown phase which intensity was decreased when the temperature was increased

500℃~600℃之间,TGA曲线下降缓慢、均匀地失 重,表明反应趋于平稳。对固体前驱物(2)在480℃ 和580℃保温后相分析的结果表明,在480℃已经有 ZrWO4F2相生成。并且随着温度的升高,转化率提 高。在580℃ZrWO4F2已经成为主要物相(见图3)。 700℃的相分析表明,该样品已分解为WO3(JCPDS: 20-1324)和ZrO2(JCPDS:17-923;37-1484)。根据上 述反应过程的分析,我们将合成保温的温度确定为 580℃。通过监测没有出现WO3(JCPDS:20-1324)的 特征峰(d=3.85Å、3.69Å、3.75Å)为标志,确定保 温时间为20min(见图3)。如果保温时间延长,样品 将逐渐分解为WO3和ZrO2。因此ZrWO4F2为热力学 介稳态,制备纯相ZrWO4F2的关键是控制好灼烧温 度和保温时间。温度过高和时间延长都导致 ZrWO4F2分解为相应的稳定氧化物。

#### 参考文献

- ZHAO Xin-Hua(赵新华) Huaxue Tongbao (Chemistry), 1998, 11, 19.
- [2] Mary T. A., Evans J. S. O., Vogt T., Sleight A. W. Science. 1996, 272, 90.
- [3] Kameswan U., Sleight A. W., Evans J. S. O. Inter. J. Inorg. Mater., 2000, 2, 333.
- [4] ZHANG Shan-Ying(张山鹰), ZHAO Xin-Hua(赵新华).
   MA Hui(马 辉), WU Xin-You(吴辛友) Chinese Journal of Chemistry, 2000. 4, 571.
- [5] Hagenmuller P. Inorganic Solid Fluorides, Academic Pree. Inc., 1985, p205.
- [6] Ismailzade I. H., Ravez J. Ferroelectrics, 1978, 21, 423.
- [7] (a)Pausewang G., Dehnicke K. Z. Anorg. Allg. Chem., 1969, 369, 265;
  - (b) Pausewang G., Rudorff W. Z. Anorg. Allg. Chem., 1969, 364, 69.
- [8] Werner P. E., Kriksson L., Wespdahl M. J. Apply. Crystallogr., 1985, 18, 367.

#### · 1249 ·

#### The Precursor Route Synthesis and Characteristic of ZrWO<sub>4</sub>F<sub>2</sub>

WU Yan<sup>1</sup> ZHAO Xin-Hua<sup>\*,1</sup> MA Hui<sup>2</sup>

(<sup>1</sup> Department of Chemistry, <sup>2</sup> Analyzing and Testing Center, Beijing Normal University, Beijing 100875)

Zirconium tungsten oxyfluoride, ZrWO<sub>4</sub>F<sub>2</sub>, was firstly synthesized with the precursor route. The composition of the compound was determined by combining the results of ICP and XPS. The indexed powder X-ray diffraction pattern of this compound indicates that it is a pure phase, orthorhombic crystal system, space group  $D_2^2 = P2_122$ and a = 15.32(2) Å, b = 13.877(7) Å, c = 8.42(2) Å. Combining the results of the DTA-TGA curves from room temperature to 700°C and XRD patterns in different temperatures the mechanism was revealed during the solid precursor (1) been heated to 700°C. The zirconium tungsten oxyfluoride was considered to be a metastable compound. The ascertaining of annealing time and temperature is the key of handling.

Keywords: zirconium tungsten oxyfluoride ZrWO<sub>4</sub>F<sub>2</sub> precursor route synthesis