Vol. 19, No. 1 Jan., 2003

三维开放骨架结构混配型铜羟亚乙基二膦酸化合物 的合成、结构和磁性研究

殷平1 郑丽敏*1 高松2 忻新泉1

(1南京大学配位化学国家重点实验室,南京 210093)

(2北京大学稀土材料与应用国家重点实验室,北京 100871)

采用水热方法合成了一个具有新型三维骨架结构的混配型铜羟亚乙基二膦酸化合物 Na₂Cu₃(hedp)₂(pz) (H₂O)₂(hedp = 1-羟亚乙基二膦酸),并对其进行了初步表征。X-射线单晶结构分析表明它属于三斜晶系,空间群为 $P\overline{1}$,晶胞参数为 a = 6.2435 (17)Å, b = 7.100(2)Å, c = 11.998(3)Å, $\alpha = 84.400(4)^{\circ}$, $\beta = 86.060(5)^{\circ}$, $\gamma = 81.580(4)^{\circ}$,晶胞体积 V = 522.8(3)Å³, Z = 1。磁 性研究发现该化合物中 Cu (II)之间通过 O-P-O 桥存在着弱的反铁磁相互作用。

关键词:	二膦酸铜 Ⅲ)	晶体结构	磁性研究	吡嗪
分类号:	0611.4	0614. 121		

0 引 言

为了模拟传统沸石的性质,并进一步探索新型 具有优异的物理或化学性质的有机类沸石材料,近 年来,设计并合成新的具有多孔或开放骨架结构的 无机/有机杂化物或固体配合物引起了人们广泛的 兴趣^[1,2]。而金属有机膦酸化合物因其在吸附、离子 交换、传感器以及非线性光学领域中的潜在应用前 景而得到了迅速的发展^[3-6]。

有机膦酸金属配合物与传统无机多孔材料相比 有着制备条件温和,结构可以预测以及具有不同寻 常的结构多样性等显著特点。研究表明不同价态的 金属可与有机膦酸形成层状、层柱状及其它结构类 型的化合物,其中还包括孔道结构^[3,7-9]。对于有机 膦酸铜化合物的合成而言,较多使用铜盐和适当 的单膦酸或二膦酸直接反应的方法^[10-14]和模板剂 法^[15,16],而混配型的有机膦酸铜化合物的文献报道 还较少^[17,18]。我们采用引入第二配体的设计方法 合成了一系列混配型铜羟亚乙基二膦酸(hedpH₄)化 合物,包括 Cu₄(hedp)₂(pz)(H₂O)₄(pz = 吡嗪)^[19], Cu₃(hedpH₂)₂(4,4'-bpy)₂·2H₂O(4,4'-bipy = 4,4'- 联吡啶)^[20], Cu₃(hedpH)₂(4, 4'-bipy)(H₂O)₂ · 2H₂O 和 Cu₃(hedpH)₂(4, 4'-azpy)(H₂O)₂ · 1.6H₂O(4, 4' -azpy = 4, 4'- 偶氮吡啶)^[21]。

本文报道了一个新的具有三维骨架结构的混 配型铜羟亚乙基二膦酸化合物 Na₂Cu₃(hedp)₂(pz) (H₂O)₂,通过 X 射线粉末衍射、红外光谱及差热 - 热 重对其进行了初步表征,通过 X-射线单晶结构分析 确定其晶体结构,发现该化合物具有三维开放骨架 结构,其中膦酸铜层结构由 {Cu₃(hedp)₂(H₂O)}梯形 双链通过桥连配体吡嗪连接而成,层与层之间借助 共边的 NaO₆ 八面体和 CuO₄ 四边形组成三维网络结 构,并在[100]方向产生一维孔道。此外还对其进行 了磁学性质的测试,结果表明该化合物中 Cu (II)之 间通过 O-P-O 桥存在着弱的反铁磁相互作用。

1 实验部分

1.1 仪器与试剂

所用的试剂均为化学纯或分析纯,未经进一步的纯化。元素分析在 Perkin-Elmer 240C 元素分析仪 上测定;红外光谱在 Nicolet 170SX FT-IR 光谱仪上, KBr 压片法获得; 差热 - 热重曲线通过 TGA-DTA

收稿日期:2002-09-30。收修改稿日期:2002-10-22。

国家自然科学基金资助项目(No. 20131020, No. 90101028)和江苏省自然科学基金资助项目(No. BK2002078)。

^{*} 通讯联系人。E-mail: lmzheng@ netra. nju. edu. cn

第一作者:股 平,女,31岁,博士;研究方向:固体配位化学。

第19卷

表 1 化合物 1 的晶体学数据

V1.1B TA Inst 2100 热分析仪测定, № 气氛, 升温速
率为 5℃ ·min ⁻ ,温度范围 15~600℃; XRD 在
XD-3A X 射线衍射仪上测定, Cu 靶; 变温磁化率采
用多晶样品,在 MagLab System 2000 磁测定仪上进
行测定, 温度范围 2~300K, 抗磁部分用 Pascal 常数
校正[22]。

1.2 Na₂Cu₃(hedp)₂(pz)(H₂O)₂(1)的合成

将 1mmol Cu(NO₃)₂ · 2H₂O(0. 2414g), 1mmol pz (0.0821g), 1mL 50% hedpH4 和 1mol · L⁻¹ NaOH 8mL的混合物 (pH=3.79) 封入内衬聚四氟乙烯的 不锈钢反应釜中,于150℃恒温反应48h后取出,自 然冷却至室温,产物经水洗涤并于空气中自然干燥, 得到蓝色片状晶体,用 X-射线粉末衍射判断其纯 度。产率: 51.9%。元素分析值(理论计算值)%:C: 13.35(12.69); H: 2.65(2.11); N: 3.60(3.70)。红外 光谱 (KBr): 3473w, 3209br, 3062m, 1659m, 1461w, 1421m, 1371w, 1172s, 1106s, 1019s, 980s, 962s, 903m, 806s, 581s, 410s cm⁻¹o

该化合物的单晶结构在带有石墨单色器的 Bruker SMART APEX CCD 衍射仪上测定, 晶体大小 为: 0.25×0.06×0.06mm³。用 Mo Kα 射线 (λ= 0.7173Å) 和 ω-2θ 扫描方式, 用 SAINT^[23]程序进行 数据还原,并对 Lp 因子、空气吸收进行了强度校 正。在 3.42° < 2 0 < 47.08°范围内收集到 1523 个衍 射点,其中1383 个 $I \ge 2\sigma(I)$ 的衍射数据用于结构 分析,该配合物进行了经验吸收校正。

分子结构由直接法解出,用 SHELXTL 全矩阵 最小二乘法精修[24]。所有的非氢原子采用各向异性 热参数精修,所有的氢原子在电子密度图上确定并 采用各向同性的固定模型修正。晶体学数据列于表 1, 原子坐标列于表 2, 部分键长和键角数据列于表 3。

CCDC: 195009°

结果与讨论 2

2.1 Na₂Cu₃(hedp)₂(pz)(H₂O)₂(1)的合成及初步表 征

我们研究了各种实验条件如反应物的摩尔比、 pH 值、反应时间等对产物组成、结构以及结晶度影 响,借助于 XRD 图以及一些初步的表征工作来确定 产物。结果发现当 Cu²⁺: pz: hedp 的摩尔比为 0.5~ 1.5:1:2.5,0.5~1.5:1:1.25时,若pH值较高(4

Table 1	Crys	tallograp	hic Data	of Compound	1

molecular formula	C8H16Cu3N2Na2O16P4
formula weight	756. 7
crystal system	trilinic
space group	PĪ
unit cell dimension	a = 6.2435(17)Å, $b = 7.100(2)$ Å,
	$c = 11.998(3)$ Å, $\alpha = 84.400(4)$ °,
	$\beta = 86.060(5)^\circ$, $\gamma = 81.580(4)^\circ$,
	V = 522.8(3)Å ³
Z	1
density	2. 403g · cm ⁻³
<i>F</i> (000)	375
$\mu(Mo K\alpha) / cm^{-1}$	34. 57
goodness-of-fit on F^2	1.012
$R_1, w R_2^{\bullet}(I \ge 2\sigma(I))$	0. 0327, 0. 0867
R_1 , w R_2^* (all data)	0. 0354, 0. 0881
largest diff. peak and hole $(\Delta \rho)_{max}, (\Delta \rho)_{min} / (e \cdot Å^{-3})$	0. 578, -0. 479

a: $R_1 = \sum [|F^0| - |F_c| / \sum |F_0|,$ $w R_2 = \left[\sum w (F_0^2 - F_c^2)^2 / \sum w (F_0^2)^2 \right]^{1/2}$

左右),将得到化合物 1,而在 pH 值较低(2、3 左右) 时得到化合物 Cu₄(hedp)₂(pz)₂(H₂O)₄^[19]。其中在 $T = 150^{\circ}$, Cu²⁺: pz: hedp 为 1: 1: 2. 5, pH = 3. 79 的 反应条件下得到的配合物1产量较高(51.9%),并 且物相单一,被用来进行表征以及性质测试。

该化合物的红外光谱中在 3000~3500cm⁻¹ 范 围内的强宽峰为水分子、膦酸的 α-OH 以及质子化 的膦酸中 OH 的伸缩振动, 3020~3070cm⁻¹ 范围内 的中等强度峰为第二刚性配体中的 = C-H 伸缩振 动, 1650~1680cm⁻¹ 和 1440~1410cm⁻¹ 范围内的 中等强度的峰为第二刚性配体中 C = C 与 N = N 的 伸缩振动, 1000~1200cm⁻¹范围内的峰为 POO⁻的 对称和反对称伸缩振动,900cm⁻¹附近的峰为(P-O) M 和 (P-O) H 的伸缩振动 [25]。Cu (Ⅱ) d⁹ 组态的基谱 项为 E_s, 激发态谱项为 T_{2s}, 在紫外可见漫反射光 谱图中 14880cm⁻¹ 处出现的吸收峰对应于 ${}^{2}E_{a}$ → ² T₂₅^[26]。在 15~300℃温度范围内该配合物失重为 16.2%, 这比失去两分子水以及一分子吡嗪的百分 比 15.3% 略大, 高于 320℃以上的失重归因于有机 膦酸的分解,同时晶格坍塌。

2.2 Na₂Cu₃(hedp)₂(pz)(H₂O)₂(1)的晶体结构

该配合物的结构单元图和晶胞堆积图可参 见图 1 和图 2。配合物 1 中的阴离子链是由对称的 $Cu_3(hedp)_2(H_2O)_2 结构单元组建的,其中明显存在$ 两种类型的铜原子, Cu(1) 原子处于对称中心位置,

第1期

殷

· 51 ·

表 2 化合物 1 的非氢原子坐标参数和各向同性热参数

 Table 2 Nonhydrogen Fractional Atomic Coordinates (× 10⁴) and Equivalence Isotropic

Temperature Factors($Å^2 \times 10^3$) for Compound 1

atom	X	Y	Z	$U(eq)^*$	atom	X	Y	Ζ	U(eq)*
Cu(1)	0	0	5000	17(1)	Cu(2)	4266(1)	- 1030(1)	8098(1)	15(1)
Na(1)	- 1875(3)	- 3984(2)	5889(1)	24(1)	P(1)	- 677(2)	- 557(1)	7589(1)	15(1)
P(2)	2024(2)	2360(1)	6557(1)	14(1)	0(1)	- 568(5)	- 1366(4)	6453(2)	23(1)
0(2)	1258(4)	- 1325(4)	8289(2)	20(1)	0(3)	- 2759(5)	- 828(4)	8264(2)	23(1)
0(4)	2270(5)	1140(4)	5556(2)	22(1)	0(5)	3792(4)	1615(4)	7372(2)	17(1)
0(6)	1904(5)	4452(4)	6175(2)	22(1)	0(7)	-2217(5)	2771(4)	6486(3)	26(1)
O(1W)	4576(5)	-2750(5)	6444(3)	26(1)	N(1)	4751(5)	~ 3418(5)	9218(3)	16(1)
C(1)	- 586(6)	2004(6)	7292(3)	17(1)	C(2)	- 973(8)	3020(7)	8353(4)	31(1)
_ C(3)	3579(7)	- 4857(6)	9206(4)	21(1)	C(4)	3833(7)	- 6423(6)	9983(3)	20(1)

a: $U(eq) = (1/3) \sum_{i} \sum_{j} U_{ij} a_i * a_j * a_i a_j$

表 3 化合物 1 的主要键长和键角

Table 3 Selected Bond Distances (Å) and Bond Angles (°) for Compound 1*

Cu(1)-O(4)	1.919(3)	Cu(1)-O(1)	1.948(3)	Cu(2)-O(3B)	1.909(3)
Cu(2)-O(2)	1.916(3)	Cu(2)-O(5)	1.982(3)	Cu(2)-N(1)	2.057(3)
Cu(2)-O(1W)	2.412(3)	Cu(2)-O(1W)	2.412(3)	Na(1)-O(1)	2.312(3)
Na(1)-O(1WB)	2.338(4)	Na(1)-O(7B)	2.381(3)	Na(1)-O(6B)	2.487(3)
Na(1)-O(4A)	2.524(3)	Na(1)-O(6A)	2.531(4)	P(1)-O(3)	1.511(3)
P(1)-O(1)	1.523(3)	P(1)-O(2)	1.523(3)	P(1)-C(1)	1.827(4)
P(2)-O(6)	1.504(3)	P(2)-O(5)	1.527(3)	P(2)-O(4)	1.535(3)
P(2)-C(1)	1.837(4)	O(7)-C(1)	1.463(5)	N(1)-C(4B)	1.334(5)
N(1)-C(3)	1.343(6)	C(1)-C(2)	1.511(6)	C(3)-C(4)	1.377(6)
O(4A)-Cu(1)-O(4)	180. 0	O(4)-Cu(1)-O(1)	92.15(12)	O(4)-Cu(1)-O(1A)	87.85(12)
O(3B)-Cu(2)-O(2)	167.21(12)	O(3B)-Cu(2)-O(5)	90.60(11)	O(2)-Cu(2)-O(5)	95.69(11)
O(3B)-Cu(2)-N(1)	85.72(12)	O(2)-Cu(2)-N(1)	85.39(12)	O(5)-Cu(2)-N(1)	165.26(13)
O(3B)-Cu(2)-O(1W)	100. 52(12)	O(2)-Cu(2)-O(1W)	89.51(12)	O(5)-Cu(2)-O(1W)	98.99(11)
N(1)-Cu(2)-O(1W)	95.71(13)	O(1)-Na(1)-O(1WB)	91.20(12)	O(1)-Na(1)-O(7B)	141.32(13)
O(1WB)-Na(1)-O(7B)	95.71(13)	$O(1)-N_{B}(1)-O(6B)$	82.81(11)	O(1WB)-Na(1)-O(6B)	155.63(13)
O(7B)-Na(1)-O(6B)	75.37(10)	O(1)-Na(1)-O(4A)	67.21(10)	O(1WB)-Na(1)-O(4A)	83.09(12)
O(7B) - Na(1) - O(4A)	151.40(13)	O(6B)-Na(1)-O(4A)	115.61(11)	O(1)-Na(1)-O(6B)	120.45(11)
O(1WB)-Na(1)-O(6A)	106.21(12)	O(7B)-Na(1)-O(6A)	93.98(11)	O(6B) - Na(1) - O(6A)	97.11(11)
O(4A)-Na(1)-O(6A)	59. 50(10)	P(1)-O(1)-Cu(1)	126. 15(17)	P(1)-O(1)-Na(1)	131.75(16)
Cu(1)-O(1)-Na(1)	100. 10(12)	P(1)-O(2)-Cu(2)	132.41(16)	P(1) - O(3) - Cu(2)	141.87(19)
P(2)-O(4)-Cu(1)	125.43(16)	P(2)-O(4)-Na(1A)	94.21(14)	Cu(1)-O(4)-Na(1A)	93.93(12)
P(2)-O(5)-Cu(2)	124.35(16)	P(2)-O(6)-Na(1A)	94.71(15)	C(4B)-N(1)-Cu(2)	121.9(3)

a: Symmetry code: A: -x, -y, -z+1; B: x+1, y, z.

图1 化合物1的单元结构图

Fig. 1 View of structure for the unit of compound 1

与 hedp 提供的四个膦氧原子 [O(1), O(4), O(1A), O(4A)] 配位形成平面四边形的配位环境。Cu(1) -O 的平均键长为 1.934(3)Å,同(NH₄)₂Cu₃(hedp)₂ (H₂O)₄ 中的 Cu-O 平均键长 [1.963(3)Å] 相比略 小^[27]。Cu(2)原子具有畸变的四方锥配位环境,由 O (2),O(5),N(1),和 O(3B)原子组成基准平面,水分 子中的 O(1W)占据了顶点的位置。Cu(2)-O(1W)的 键长 [2.412(3)Å]比其它 Cu(2)-O 键的键长 [1.909 (3)~1.982(3)Å]要长。

Hedp⁴⁻配体是以两个 {CPO₃} 组分中的四个氧 原子通过双-双齿的方式桥连 Cu(1)和 Cu(2)原子, 剩余的两个氧原子之一 O(6) 同 Na(1A) 原子 相配位,另一个氧原子 O(3)进一步同相邻的三 聚体 Cu₃(hedp)₂(H₂O)₂单元连接形成了类似于 (NH₄)₂Cu₃(hedp)₂(H₂O)₄^[27]中的梯形阴离子链。相 邻的梯形链进一步通过桥联配体吡嗪与 Cu(2)配位 连接成为 Z 形层状结构(参见图 3)_oNa(1)原子是畸 变八面体的配位环境,分别与 O(1),O(4A),O(6B), O(6A),O(7B)和 O(1WB)配位,Na(1)-O 的键长变 化范围是 2.312(3)~2.531(4) Å,这些键长和 Na₂Cu₁₅(hedp)₆(OH)₂(H₂O)^[28]相比非常接近。NaO₆ 八面体与相邻 {Cu₃(hedp)₂(pz)(H₂O)₂}²ⁿ⁻层中的 CuO₄平面四边形共边而组成三维网络结构,并在 [100]方向产生一维孔道。

图 3 化合物 1 沿 a 轴的晶胞堆积图

Fig. 3 Structure of compound 1 packed along the a-axis

该结构与 Cu₄(hedp)₂(pz)(H₂O)₄^[19]的三维骨架 结构类似,不同的是在 Cu₄(hedp)₂(pz)(H₂O)₄^[19]中 是 CuO₄ 单元与{Cu₃(hedp)₂(pz)(H₂O)₂}²ⁿ⁻层中的 CPO₃ 四边形共顶而形成三维骨架结构。同样地在化 合物 Cu₃(hedpH)₂(4, 4'-bipy)(H₂O)₂ · 2H₂O 和 Cu₃(hedpH)₂(4, 4'-azpy)(H₂O)₂ · 1.6H₂O^[21]也存在 类似的由梯形双链和第二配体构成的 {Cu₃(hedpH)₂ (L)}层,所不同的是层与层间主要通过 {Cu₃(hedp)₂ (H₂O)₂}链中的膦酸氧和羟基氧之间的氢键作用,从 而形成了三维网络结构。

2.3 Na₂Cu₃(hedp)₂(pz)(H₂O)₂(1)的磁性质

图 4 所示为标题化合物的 $\chi_{M} T 和 \chi_{M}$ 随温度 T 的变化曲线。在 275K 时根据 $\mu_{eff} = 2.828(\chi_{M} T)^{1/2}$ 所 计算的有效磁矩是每 Cus 单元为 3.10 μ_{θ} , 这与独立 的三个 S = 1/2 自旋的理论计算数值 3.00 μ_{θ} 一 致。随着温度的降低,样品的 $\chi_{M} T$ 不断减少,并趋近 于零,在 $\chi_{M} ~ T$ 图中则未观察到极大值,这表明 Cu (II)之间通过 O-P-O 桥存在着弱的反铁磁相互作用。 此外,由 50~300K 温度范围内的磁化率数据得到 的 Weiss 常数(θ)为负值(-29.93K),进一步确证 了反铁磁相互作用的存在。

Fig. 4 $\chi_{\rm M} T \sim T$ and $\chi_{\rm M} \sim T$ plot for compound 1

3 结 论

本文报道了一个新颖的混配型铜羟亚乙基二膦 酸化合物 Na₂Cu₃(hedp)₂(pz) (H₂O)₂(hedp = 1- 羟亚 乙基二膦酸)的合成和表征,其晶体结构中膦酸铜层 是由 {Cu₃(hedp)₂(H₂O)₂}_{a^2n-}梯形双链通过桥连配 体吡嗪连接而成,层与层之间借助共边的 NaO₆ 八面 体和 CuO₄ 四边形组成三维开放骨架结构,并在 [100]方向产生一维孔道。磁性测试结果表明该化合 物中 Cu (II)离子之间通过 O-P-O 桥存在着弱的反铁 磁相互作用。

· 53 ·

殷 平等:三维开放骨架结构混配型铜羟亚乙基二膦酸化合物的合成、结构和磁性研究

参考文献

第1期

- Hagrman P. J., Hagrman D., Zubieta J. Angew. Chem. Int. Ed., 1999, 38, 2639.
- [2] Cheetham A. K., Ferey G., Loiseau T. Angew. Chem. Int. Ed., 1999, 38, 3268.
- [3] Cao G., Hong H., Mallouk T. E. Acc. Chem. Res., 1992, 25, 420.
- [4] Alberti G. Comprehensive Supermolecular Chemistry, Lehn J. M. Ed., Pergamon, Elsevier Science, Ltd., Oxford, UK, 1996, Vol. 7.
- [5] Snover J. L., Byrd H., Suponeva E. P., Vicenzi E., Thompson M. E. Chem. Mater., 1996, 8, 1490.
- [6] Huan G., Johnson J. W., Jacobson A. J., Merola J. S. J. Solid State Chem., 1990, 89, 220.
- [7] Clearfield A. Comments Inorg. Chem., 1990, 10, 114.
- [8] Alberti G., Marmottini F., Murcia-Mascaros S., Vivani R. Angew. Chem. Int. Ed. Engl., 1994, 33, 1594.
- [9] Poojary D. M., Grohol D., Clearfield A. Angew. Chem. Int. Ed. Engl., 1995, 34, 1508.
- [10] Le Bideau J., Payen C., Palvadeau P., Bujoli B. Inorg. Chem., 1994, 33, 4885.
- [11] Drumel S., Janvier P., Deniaud D., Bujoli B. J. Chem. Soc., Chem. Commun., 1995, 1051.
- [12] Akimoto J., Kiyozumi Y., Mizukami F. Angew. Chem. Int. Ed. Engl., 1995, 34, 1199.
- [13] Lohse D. L., Sevov S. C. Angew. Chem. Int. Ed. Engl., 1997, 36, 1619.
- [14] Riou-Cavellec M., Sanselme M., Ferey G. J. Mater. Chem., 2000, 10, 745.

- [15]Soghomonian V., Chen Q., Haushalter R. C., Zubieta J. Angew. Chem. Int. Ed. Engl., 1995, 34, 223.
- [16]Zheng L. -M., Song H. -H., Xin X. -Q. Comments Inorg. Chem., 2000, 22, 129.
- [17] Clearfield A., Poojary D. M., Zhang B., Zhao B., Derecskei-Kovacs A. Chem. Mater., 2000, 12, 2745.
- [18] Finn R. C., Zubieta J. J. Chem. Soc., Dalton Trans., 2000, 1821.
- [19] Yin P., Zheng L. -M., Gao S., Xin X. -Q. Chem. Commun., 2001, 2346.
- [20] Zheng L. -M., Yin P., Xin X. -Q. Inorg. Chem., 2002, 41, 4084.
- [21]YIN Ping(殷 平) Thesis for the Doctorate of Nanjing University(南京大学博士论文), 2002.
- [22]Kahn O. Molecular Magnetism, VCH Publishers, Inc. : New York, 1993.
- [23] SAINT, Program for Data Extraction and Reduction, Siemens Analytical X-ray Instruments, Madison, WI 53719, 1994 ~ 1996.
- [24] SHELXTL (version 5.0), Reference Manual, Siemens Industrial Automation, Analytical Instrumentation, Madison, W1, 1995.
- [25] Nash K. L., Rogers R. D., Ferraro J., Zhang J. Inorg. Chim. Acta, 1998, 269, 211.
- [26]CHEN Hui-Lan(陈慧兰), YU Bao-Yuan(余宝源) Theoretical Inorg. Chem. (理论无机化学), Shanghai: Higher Education Publishing House, 1998, p123.
- [27] Zheng L. -M., Song H. -H., Duan C. -Y., Xin X. -Q. Inorg. Chem., 1999, 38, 5061.
- [28] Zheng L. -M., Duan C. -Y., Ye X. -R., Zhang L. -Y., Wang C., Xin X. -Q. J. Chem. Soc., Dalton Trans., 1998, 905.

Synthesis, Crystal Structure and Magnetic Properties of a Mixed-Ligated Copper (II) 1-Hydroxyethylidenediphosphonate with an Open Framework Structure

YIN Ping¹ ZHENG Li-Min^{*,1} GAO Song² XIN Xin-Quan¹

(¹ State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093) (² State Key Laboratory of Rare Earth Materials and Applications, Peking University, Beijing 100871)

A new copper diphosphonate, Na₂Cu₃(hedp)₂(pz) (H₂O)₂(hedp = 1-hydroxyethylidenediphosphonate), was synthesized by hydrothermal method, and was characterized by IR, XRD, TGA and EA. The crystal structure of the compound was determined by X-ray single crystal diffraction. The crystal belongs to triclinic system with space group $P\overline{1}$, a = 6.2435(17) Å, b = 7.100(2) Å, c = 11.998(3) Å, $\alpha = 84.400(4)^{\circ}$, $\beta = 86.060(5)^{\circ}$, $\gamma =$ $81.580(4)^{\circ}$, V = 522.8(3) Å³, Z = 1. The study of magnetic property shows that weak antiferromagnetic interactions are mediated between copper (II) ions through O-P-O bridges. CCDC: 195009.

Keywords:	Copper (II) diphosphonate	crystal structure	magnetic property	pyrazine
		-		