Vol. 19, No. 1 Jan.,2003

六方类钙钛矿体系 La2- "Nd "Ca2MnO7 的结构和相关系

别利剑^{1,2} 李国宝 / 廖复辉 / 林建华*,1

(1北京大学稀土材料化学与应用国家重点实验室,化学与分子工程学院,北京 100871) (2临沂师范学院化学系,临沂 276005)

利用柠檬酸盐前驱物法制备了 La_{2-x}Nd_xCa₂MnO₇ 系列样品,并利用 Rietveld 方法对结构进行了精修。结果表明:体系中存在两个单相区($x \le 1, 0, x \ge 1.5$)和一个两相区(1, 0 < x < 1.5)。体系这种结构变化可以用稀土离子半径变化说明。

关键词:	六方类钙钛矿	夹层化合物	锰酸盐	固体化学
分类号:	0614. 33	0614. 23+1	0614. 7*11	

0 引 言

类钙钛矿结构化合物是最近 20 年来引人注 目的一类化合物,无论是高温超导材料^[1,2]还是巨磁 阻^[3~5]材料大都属于这类结构的化合物。常见的类 钙钛矿结构单元是四方钙钛矿层^[6], Ruddlesden-Popper 相 (ABO₃)_nAO^[7,8]就是由 n 层四方钙钛矿层 结构单元和岩盐结构单层沿 c 轴交替排列形成的。 比较而言、关于六方层状钙钛矿化合物报道却很 少[9~12]。四方层状钙钛矿的普遍性源于结构单元表 面原子层的匹配:四方钙钛矿层的(001)面与岩盐层 具有相同的原子排列和组成,同为"AO"。在形成层 状四方钙钛矿化合物时,表面原子只需发生很小的 结构畸变。六方钙钛矿层表面原子按密致层方式排 列[AO₃],形成六方层状钙钛矿化合物时,插入的原 子层应当与其匹配。在系统研究 La-Ca-Mn-O 体系相 关系图过程中,我们发现了一种新型的稀土锰酸盐 La₂Ca₂MnO₇^[11, 12],结构是六方钙钛矿单层[La₂MnO₆] 与类石墨层[Ca2O]交替排列而构成的。La2Ca2MnO7 中的 La 可以被其它稀土元素取代, 当 La 完全被 Nd 取代时,有超晶格结构出现。这种超晶格可能与稀 土离子的半径有着密切的关系,在本文中我们报道 了 La2- "Nd "Ca2MnO7 体系的结构变化和相关系。

1 实验部分

实验中所用的稀土氧化物的纯度为 99.99%, 碱土金属 和锰的 硝酸盐为分析 纯级试剂。 La₂₋,Nd_{*}Ca₂MnO₇系列样品用柠檬酸盐前驱物法制 备。在化学计量比的 La(NO₃)₃、Nd(NO₃)₃、Ca(NO₃)₂ 和 Mn(NO₃)₂溶液中加入适量柠檬酸,溶液置于电 炉加热蒸干,得到的混合物在 800℃预烧得到混合 氧化物,压片后在 900℃下烧结数天即得到样品。

X-射线粉末衍射数据用 Rigaku D/Max-2000 衍射仪以步进扫描方式收集(条件: Cu 靶,石墨单色 器,管压 50kV,管流 120mA,步长为 0.02°,每步停留 时间为 3s,范围是 10°~100)°。利用 GSAS 程序^[13]对 结构进行精修。

2 结果与讨论

2.1 La₂Ca₂MnO₇和 Nd₂Ca₂MnO₇的结构

La₂Ca₂MnO₇的结构在文献^[11]中已有报道。图 1 给出了 La₂Ca₂MnO₇结构沿 (110)方向的投影,其 结构特征可描述为 [LaO₃] 密致层沿 *c* 轴方向以 AABBCC 方式排列,这里的大写字母代表 [LaO₃] 密 致层的不同位置。层间的八面体和三棱柱分别被锰 离子和钙离子占据,其中 Ca 离子构成类石墨结构。 因此,结构可看成六方钙钛矿 [La₂MnO₆]单层与类石 墨结构的 [Ca₂O]层交替排列而形成。

收稿日期:2002-09-14。收修改稿日期:2002-11-08。

国家自然科学基金资助项目(No. 20131010)及国家重点实验室基金资助。

^{*} 通讯联系人。E-mail: jhlin@ chem. pku. edu. cn

第一作者:别利剑,男,37岁,博士研究生,副教授;研究方向:无机固体化学。

无机化学学报

- 图 1 La₂Ca₂MnO₇结构沿(110)方向的投影, Mn 位于八面 体中,周围是 O 原子, La 原子用大黑圈表示 类石墨层中的 Ca 原子用小黑圈表示, 层中的 O 原 子以小圆圈表示
- Fig. 1 Projection of the structure of La₂Ca₂MnO₇ along (110) direction. Mn atoms lie within the octahedra, the vertices are O atoms, La atoms are shown as isolated large dark circles. The Ca atoms, in the graphite-like network, are shown as Nd all dark circles, and the O atoms, described by six-fold distortion, are shown as Nd all light circles

Nd₂Ca₂MnO₇的X射线衍射图与La₂Ca₂MnO₇的 相似,表明两者结构相似。但在Nd₂Ca₂MnO₇的衍射 图中出现几个弱衍射峰(图 2)。这些弱衍射峰可以 用更大三方单胞描述($a' \approx 2a \ \pi c' \approx c$),表明 Nd₂Ca₂MnO₇的结构发生畸变。CSAS 精修的结果表 明,它属于三方空间R3,晶胞参数为:a = 11.1096(2)Å,c = 17.1987(9)Å(Nd₂Ca₂MnO₇的晶体学参数 及精修结果列于表 1 和表 2 中)。与 La₂Ca₂MnO₇相 比,Nd₂Ca₂MnO₇中金属离子的位置变化不大,只是 氧原子的位置发生了偏移。

表 1 Nd₂Ca₂MnO₇ 的晶体学参数

Table 1 Crystallographic Parameters of Nd₂Ca₂MnO₇

chemical formula	Nd ₂ Ca ₂ MnO ₇
formula weight	535, 57
space group	R3
a∕Å	11.1096(2)
c∕Å	17. 1987(9)
V∕ų	1838.3(2)
Z	12
$ ho_{ m valed}/({ m g}\cdot{ m cm}^{-3})$	5. 797
X-ray diffraction	Cu Ka radiation, 50kV, 120mA, FT mode
structure solution	direct method (sirpow 92)
rietveld Refinement	GSAS
Rp	0. 086
Rwp	0. 118

这两种结构中的稀土离子配位多面体有显著差 别:在La₂Ca₂MnO₇中La原子的配位数为10,其中9 个La-O键长分别为2.536Å和2.835Å;在[Ca₂O]层 中的氧原子也与La配位,键长为2.236Å。在 Nd₂Ca₂MnO₇中,有两种结晶学独立的Nd原子;由于 Nd³⁺离子半径比较小,氧原子位置发生偏移, [NdO₃]不再是理想密致层结构,Nd原子配位数降 低;Nd1为七配位,键长在2.167Å到2.632Å之间; Nd2为八配位,键长在2.246Å到2.870Å之间。图3 给出了这两种结构中六方钙钛矿单层的结构,可以 看到,Nd₂Ca₂MnO₇结构中的MnO₆八面体发生明显

表 2 精修得到的 Nd₂Ca₂MnO₇ 的原子坐标及各向同性温度因子

Table 2	Atomic Coordinates and	l Equivalent Isotropic	Temperature Factors	of Nd ₂ Ca ₂ MnO ₇ after	Fine Modificatio
---------	------------------------	------------------------	----------------------------	---	------------------

atom	site	x	y	z	U(iso)	occupation
Mnl		0	0	0	1.61(20)	1
Mn2	9e	1/2	0	0	1.61(20)	1
Ndl	6c	0	0	0.3773(9)	1.01(7)	Nd/Ca = 0, 67/0. 33
Nd2	18f	0.174(1)	0.339(1)	-0.0435(3)	1.01(7)	Nd/Ca = 0, 95/0, 05
Cal	6c	0	0	0.176(1)	2.41(16)	Ca/Nd = 0. 88/0. 12
Ca2	18f	0.012(2)	0.506(2)	0.1736(7)	2.41(16)	Ca/Nd = 0. 88/0, 12
01	18f	0.001(1)	0.183(1)	0.2816(7)	1.46(6)	1
02	18f	0.117(1)	0.153(1)	0.0579(8)	1.46(6)	1
03	18f	0.099(1)	0.664(1)	0.0745(7)	1.46(6)	1
04	18f	0.052(1)	0.388(1)	0.0675(8)	1.46(6)	1
05	18f	0.288(7)	0.686(9)	1/6.	0.23(21)	1/6
06	18f	0,254(2)	0.118(2)	1/6.	0.23(21)	1/2

*: The modificatication was performed at the begining, and at the end the fixed value was given .

· 61 ·

- 图 2 化合物(a) La₂Ca₂MnO₇和(b)Nd₂Ca₂MnO₇的粉末衍 射图
- Fig. 2 Powder X-ray diffraction patterns for (a) La₂Ca₂MnO₇, (b) Nd₂Ca₂MnO₇

The marks * indicate additional (110) reflection in the distorted structures, which signifies the larger unit cell of the distorted structure.

图 3 (a)La₂Ca₂MnO₇和(b)Nd₂Ca₂MnO₇结构中的六方 钙钛矿层结构单元

- Fig. 3 Hexagonal perovskite layer in (a) $La_2Ca_2MnO_7$ and (b) $Nd_2Ca_2MnO_7$
- 畸变。
- 2.2 La2-*Nd*Ca2MnO7 体系的相关系

 $Nd_2Ca_2MnO_7$ 的这种结构畸变可能与稀土离子 半径有关, La^{3+} 和 Nd^{3+} 的离子半径分别为 $r_{L^{*}}$ = 1.356Å, r_{Nd¹} = 1.303Å(CN = 9)^[14]。为考察稀土离子 半径对结构的影响,我们合成了 $La_{2-x}Nd_{x}Ca_{2}MnO_{7}$ 系列样品。图 4a 是该系列样品的 X 射线衍射图。随 Nd 含量的增加、衍射峰向高角度移动、并出现一些 弱衍射峰。图 4b 给出了 2θ 在 10°~15°之间的 X 射 线衍射图。当 x = 1.0 时,在 $2\theta = 10.5$ °附近新的衍 射峰开始出现,表明结构畸变已经发生。我们利用 GSAS 对整个系列的结构进行了精修,表3给出了精 修得到的晶胞参数。当 $x \leq 1.0$ 时, 样品是具有 La₂Ca₂MnO₇ 结构的单一物相,并且随着 x 值的增 大, 晶胞参数 a 和 c 线性减小。因此这个区域是具 有 La2Ca2MnO7 结构的固溶体。在 1.0 < x < 1.5 的 区域为两相区, 样品中含有 La₂Ca₂MnO₇ 和 Nd₂Ca₂MnO₇两种结构的物相。当 $x \ge 1.5$ 时,样品 是具有 Nd₂Ca₂MnO₇ 结构的单一物相、随着 x 值的增 大, 晶胞参数 a 和 c 线性减小。

- 图 4 (a)La₂-.Nd₂Ca₂MnO₇ 系列化合物 X 射线衍射图; (b)10°~15°局部区域放大图
- Fig. 4 (a) X-ray powder diffraction of the La₂₋ Nd _{*}Ca₂MnO₇ system, (b) Zoom in the range of 10° ~ 15°
 The marks * indicate additional (110) reflection in the distorted structures, which signifies the larger unit cell of the distorted structure.

图 5 给出了 La_{2-*}Nd _{*}Ca₂MnO₇ 体系的相图, 图 中的横坐标为稀土离子的平均半径。可以看到, 随稀 土离子平均半径的减小, 体系样品的结构变化是不 连续的, 中间包含一个两相共存区域。在两相区中, 晶胞参数 a 和 c 发生相反变化, 随 Nd 含量的增加 (有效离子半径逐渐减小), a 是向减小方向突跃, c 则向增大方向突跃。出现这种现象的原因是: 随着稀 土离子半径减小, La₂Ca₂MnO₇ 结构中的六方钙钛矿 层内部应力增加变得不稳定, 使得结构中的 MnO₆ 八面体发生畸变, 这种畸变导致 a-b 面内收缩和 c · 62 ·

第 19 卷

	Table 3 Compositions and Phases of La _{2-x} Nd _x Ca ₂ MnO ₇ System					
ID No.	nominal composition	a/Å	c/Å	results		
1	La2Ca2MnO7	5. 6220	17. 3171	single phase		
2	La1. 8Nd0. 2Ca2MnO7	5.6164	17.2983	one phase		
3	La1. 6Nd0. 4Ca2MnO7	5. 6117	17. 2758	one phase		
4	La1 4Nd0.6Ca2MnO7	5. 6035	17. 2630	one phase		
5	La1 2Nd0. 8Ca2MnO7	5. 5982	17. 2414	one phase		
6	LaNdCa2MnO7	5. 5972/11. 1442	17. 2382/17. 2520	two phases		
7	Lao. 8Nd1 2Ca2MnO7	5. 5721/11. 1442	17. 2382/17. 2520	two phases		
8	La _{0 6} Nd _{1. 4} Ca ₂ MnO ₇	5. 5721/11. 1442	17.2382/17.2520	two phases		
9	Lao. 5Nd1. 5Ca2MnO7	5. 5721/11. 1442	17.2382/17.2520	two phases		
10	Lao. 4Nd1 6Ca2MnO7	11. 1407	17. 2489	one phase		
11	Lao, 3Nd1. 7Ca2MnO7	11. 1314	17. 2442	one phase		
12	Lao 2Nd1.8Ca2MnO7	11. 1231	17. 2367	one phase		
13	Nd ₂ Ca ₂ MnO ₇	11. 1076	17. 2209	one phase		

- 图 5 La2-- Nd * Ca2MnO7 系列化合物晶胞参数随稀土离 子有效半径变化曲线,在 R = 1.315Å 到 R = 1.33Å 之间出现两相区域
- Fig. 5 Variation of the lattice constants with respect to the effective radii of rare earth cations in the $La_{2-} Nd Ca_2 MnO_7$ system, A two-phase region between the two structure forms can be seen around R = 1.315Å to 1.33Å

轴方向的膨胀, 以满足较小的稀土离子配位数的要求。

3 结 论

La 和 Nd 都可以形成六方层状钙钛矿化合物 La₂Ca₂MnO₇。其结构为[La₂MnO₆]六方钙钛矿单层与 [Ca₂O]石墨层交替排列而形。当稀土离子半径较小 时,结构发生畸变。在 La₂₋ $_x$ Nd $_x$ Ca₂MnO₇ 体系中, 我 们发现两个固溶区($x \le 1.0$ 和 $x \ge 1.5$)和一个两 相区(1.0 < x < 1.5)。

老

[2] Attfield J. P., Kharlanov A. L., McAllister J. A. Nature, 1998, 394, 157.

文

献

- [3] Von Helmolt R., Wecker J., Holzapfel B., Schultz L., Sanwer K. Phys. Rev. Lett., 1993, 71, 2331.
- [4] Raveau B., Maignan A., Martin C., Hervieu M. Chem. Mater., 1998, 10, 2641.
- [5] Rao C. N. R., Arulraj A., Santosh P. N., Cheetham A. K. Chem. Mater., 1998, 10, 2714.
- [6] Hyde G. B., Andersson S. Inorganic Crystal Structures, John Wiley and Sons: New York, 1989, p30 ~ 33.
- [7] Rao C. N. R., Raveau B. Transition Metal Oxides, 2 nd ed., Wiley-VCH: Washington, 1998, p61 ~ 62.
- [8] Battle P. D., Branford W. R., Mihut A., Rosseinsky M. J., Singleton J., Sloan J., Spring L. E., Vente J. F. Chem. Mater., 1999, 11, 674.
- [9] Grasset F., Dussarrat C., Darriet J. J. Mater. Chem., 1997, 7, 1911.
- [10] Grasset F., Zakhour M., Darriet J. J. Alloys Compds., 1999, 287, 25.
- [11] Wang Y. X., Lin J. H., Du Y., Qin R. W., Han B., Loong C. K. Angew. Chem., 2000, 112, 2842; Angew. Chem. Int. Ed., 2000, 39, 2730.
- [12] Wang Y. X., Du Y., Qin R. W., Han B., Lin J. H. J. Solid State Chem., 2001, 156, 237.
- [13] Larson A. C., Von Dreele R. B. Report No. LAUR 86-748, Los Alamos National Laboratory, 1985.
- [14]King R. B. Encyclopedia of Inorganic Chemistry, Vol. 2, John-Wiley and Sons: New York, 1994, p930 ~ 937.

Structure Variation in the Hexagonal Perovskite System La2- xNd xCa2MnO7

BIE Li-Jian^{1,2} LI Guo-Bao¹ LIAO Fu-Hui¹ LIN Jian-Hua^{*,1}

(¹ State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871) (² Department of Chemistry, Linyi Teachers' College, Linyi 276005)

La_{2-x}Nd_xCa₂MnO₇ samples were prepared from citric acid sol-gel precursor using solid state reaction. The cell parameters of these samples were refined using Rietveld method, which evidence the presence of single-phase regions ($x \le 1.0$ and $x \ge 1.5$) and two-phase region 1.0 < x < 1.5. The structure variation of this system can be understood by considering the ionic size of rare earth cation.

Keywords: hexagonal perovskite intergrowth compound manganate solid state chemistry