Vol. 19, No. 2 Feb.,2003

新型除铯环境材料硅钛酸钠孔道结构化合物 (Na4Ti4Si3O10)合成及结构表征

于波*陈靖宋崇立

(清华大学核能设计研究院 201 室,北京 100084)

通过溶胶凝胶 - 水热合成法制备出一种新型的硅钛酸钠孔道结构化合物 Na₄Ti₄Si₃O₁₀。经 XRD、SEM、TEM、X- 荧光分析等 方法对其晶体结构进行了表征。晶体学数据为: P4₃, a = b = 7. 8110Å、c = 11. 9735Å、 $\alpha = \beta = \gamma = 90^{\circ}$ 。该化合物具有三维空间结 构,组成基本单元为 Ti-O 八面体簇和 Si-O 四面体,孔道结构为两端都开放的管状毛细孔。微观形貌为规整的四方晶粒,粒子的 平均尺寸为 20nm;研究了 Na₄Ti₄Si₃O₁₀ 的化学稳定性、热稳定性以及在整个 pH 范围内的除铯性能。

关键词:	溶胶凝胶 - 水热合成法	硅钛酸钠	表征	分配系数
分类号:	0611, 6 0612, 4			

从高放废液中除铯¹³⁷Cs的技术已经有几十年的历史,但是仍有很大弊端,尤其酸性介质中铯的去除更是一个世界性的难题^[1-4]。2000年全世界¹³⁷Cs的生成总量为 6.59×10¹⁷Bq,并且随着核工业的迅猛发展,Cs的生成量日益增加,如此大量放射性¹³⁷Cs的存在,对环境是一个潜在的威胁,必须尽快加以妥善处置。

无机离子交换技术,凭其所特有的优势已经成 为核废物处理中较为经济和适宜的手段之一。硅钛 酸盐是一类高性能的离子交换剂,近年在美国、中 国、日本、法国等国家进行了大量的研究,并取得了 很大的进展^[5]。本文合成出一种新型纳米孔道结构 化合物 Na₄Ti₄Si₃O₁₀,它在酸性、中性及碱性溶液中, 对 Cs*有极高的选择性。

1 实验部分

1.1 仪器和试剂

X 荧光光谱分析采用日本公司的 RTF-170 型 X 荧光光谱分析仪; X 射线衍射采用日本理学 Rigaku D/max-RB 型衍射仪, Cu K α 辐射, $\lambda = 0.154$ nm, 石 墨单色器滤光, 扫描区域 2 θ 在 5°~90°范围内, 高压 40kV, 管电流 120mA, 用布拉格衍射公式计算晶面

收稿日期:2002-08-23。收修改稿日期:2002-10-21。

全国优秀博士学位论文作者专项资金资助项目(No. 199938)。

*通讯联系人。E-mail: yubo00@ mails. tsinghua. edu. cn

指数; 扫描电镜 SEM 分析采用日本 JEOL JXA-840 型 Scanning Electron Microscope, 其分辨率为 10nm; 透射电镜 TEM 分析使用日本 H-600 透射电子显微 镜; TGA-DTA 分析采用美国 Thermal Analysis 公司 SDT2960 差热, 热重联用仪, 灵敏度 0.1 μ g; Raman 分析采用日本 Breker RFS100 型拉曼光谱仪进行 分析, 分辨率 0.15cm⁻¹。孔道结构分析采用 ASAP-2010 型 (美国) 物理吸附仪, 氮气作分析气体, 测定 吸附 - 脱附等温线。由脱附数据求得 BET 表面积。 用单凝聚点(Single condensation point $p/p_0 = 0.979$) 法求得孔容积。由等温吸附线确定孔结构, 利用公式 4V/A(V为孔容积, A 为 BET 表面积) 计算平均孔 径 (average pore diameter)。所有试剂均为分析纯试 剂。

1.2 样品合成

NarTiaSi3O10 合成是由溶胶凝胶法和水热合成 法共同完成。反应原材料有烷基钛酸盐、烷基硅酸 盐、NaOH水溶液或甲醇溶液。将烷基钛酸盐按一定 比例和烷基硅酸盐混合均匀制成醇盐混合物,然后 将该混合物缓慢滴加到 NaOH水溶液中,得到白色 胶体,将它转移到有聚四氟乙烯内衬的反应釜中,高 温下进行水热反应数天。得到的固体产物用丙酮和

第一作者:于 波,女,27岁,博士研究生;研究方向;应用化学。

· 120 ·

Т

第 19 卷

去离子水洗涤,离心分离后在烘箱内烘干。

1.3 离子交换实验测定分配系数

将 0.1g Na₄Ti₄Si₃O₁₀ 交换剂装入 50mL 锥形瓶 中,加入 100ppm 的 CsNO₃ 溶液 30mL。交换温度为 室温,用振荡器振荡两天,而后用原子吸收光谱 (AAS)测定 Cs⁺离子浓度,计算分配系数 K_d,计算公 式为^[6]:

$$K_{\rm d} = \frac{(C_0 - C)}{C} \times \frac{V}{W}$$

Co: 原始溶液中的离子浓度(ppm)

C: 平衡溶液中的离子浓度(ppm)

V: 溶液体积(mL)

₩: 交换剂重量(g)

2 结果与讨论

2.1 化学组成

通过 X 荧光光谱分析和 ICP 测定,样品中所含 元素的质量百分比分别为:0,31.8%; Na, 17.1%; Si,15.2%; Ti,35.9%。得到其化学式为: Na₄Ti₄Si₃O10。其理论计算值为:0,30.3%; Na, 17.4%; Si,15.9%; Ti,36.3%。样品中Ti的含量远 远高于钛硅沸石中Ti(Si/Ti=65)的含量,这是由于 Na₄Ti₄Si₃O10 样品中Ti参与了骨架结构。

2.2 结构表征

图 1 是 Na₄Ti₄Si₃O₁₀ 样品的 XRD 衍射图, 扫描 区域 2θ 在 0°~90°。在扫描区域内的衍射峰有 100, 002, 113, 220, 300, 310, 410, 430, 434。在低角度方 向有最强的衍射峰, 是孔道结构化合物的结构特征, 最强峰对应 (100) 晶面。晶胞参数和定向矩阵由最 小二乘法修正得到, 其晶体学数据如表 1 所示。

共收集了 2527 个衍射点,其中能观察的衍射点 为 2048 个。从得到的数据中去除 Kα2 分布,用 Ito

Fig. 1 X-ray diffraction pattern of Na₄Ti₄Si₃O₁₀

索引的方法得到结构参数,通过直接法 (SHELX-86 程序)解析,获得所有非氢原子坐标,采用全矩阵最 小二乘法 (Siemens SHELX PLUS PC 版)进行修 正¹⁷¹,其中非氢原子采用各向异性热参数,最终偏离 因子 R = 0.041。利用修正后的精确原子坐标,计算 了各种原子间化学键长,键角,详见表 2,表 3。数据 结构表明为四方原始晶格,晶胞参数分别为 a = b =7.8110Å, c = 11.9375Å。分析这些相参数时,基于他 们与毒铁矿的相似,最初选择了 $P4_3m$ 空间群。后来 通过对这些结构的成功改进证实这个选择是正确 的, Na₄Ti₄Si₃O₁₀是一种类毒铁矿结构化合物。

表 1 Na₄Ti₄Si₃O₁₀ 样品实验条件及晶体学数据

able 1 Experimenta	l Conditions	and	Crystalline	Data
--------------------	--------------	-----	-------------	------

formula		Na4Ti4Si3O1				
2 <i>θ</i>		0° ~ 90°				
λ		0. 154nm				
a = b		7. 8110Å				
с		11. 9375Å				
$\alpha = \beta = \gamma$		90°				
Z		4	4			
space group		P4₃(No. 13	P43(No. 132)			
reflections collecte	ed	2527				
observed reflection	ns $(I > 2\sigma(I))$)) $2048(R_{\rm int}\approx$	0.0000)			
R•		0. 041				
R.⁵		0.142				
goodness of fit on	F ²	0.969				
$R_{*} = \frac{\sum F_{0} - F_{c} }{\sum F_{c} }, R_{*}^{b} = \frac{\sum_{x} F_{0} - F_{c} }{\sum F_{c} }$						
	生う NaT:		*****			
表 2 Na4T14513U10 键长						
Table 2	Bond Lengt	hs of Na ₄ Ti ₄ Si ₃ C) ₁₀ (A)			
Na(1)-O(1)	2.418(5)	Na(1)-O(4)	3.030(5)			
Na(1)-O(a1)	2.769(1)	Na(2)-O(1)	2.78(2)			
Na(2)-O(a2)	3.04(2)	Na(2)-O(a2)	3. 17(4)			
Na(2)-O(a1)	2.79(2)	Ti(1)-O(2)	2.109(5)			
Ti(1)-O(2)	2.030(6)	Ti(1)-O(2)	1.878(3)			
Ti(1)-O(1)	1.998(4)	Si(1)-O(1)	1.631(4)			
Table 3 Bond Angles of Na ₄ Ti ₄ Si ₃ O ₁₀ (°)						
0-Ti(1)-0	87.6(3)	0-Ti(1)-0	170.5(3)			
0-Si1-0	108.4(3)	Ti-O(1)-Si	125.2(3)			
Ti-O(1)-Si	96.4(3)	Ti-0(4)-Ti	180(4)			

毒铁矿是由 KFe₄(OH)₄(AsO₄)₃组成,它是一种 非铝硅酸盐的分子筛。它属于四方晶系、空间群 P4₃m,结构是由 FeO₄八面体和 AsO₄四面体相互连 接组成的三维网络孔道。孔是由 As 八面体和 Fe 四 面体交替组成的八元开环。每个孔由电中性的钾阳

第2期 于 波等:新型除铯环境材料硅钛酸钠孔道结构化合物(Na,Ti4Si3O10)合成及结构表征

· 121 ·

离子和水分子占据了。八面体和四面体位置可以被 其它元素代替。从毒铁矿的结构中可以得到 Na₄Ti₄Si₃O₁₀ 骨架原子的位置参数。毒铁矿中的铁和 砷原子的位置相当于钛硅酸盐中钛和硅的位置。

晶体结构分析 NatTitSinOue 的成键模式可知 Na₄Ti₄Si₃O₁₀ 具有三维空间结构,基本单元包括 Ti-O 八面体簇和 Si-O 四面体。O 原子完成了对钛原子和 硅原子的配位。每个 Ti⁴+与6个 O²⁻相连,每个 O²⁻ 与Ti⁴⁺或Si⁴⁺, 所以每个O²⁻只能提供一个负电荷给 中心的 Ti⁴⁺, 一个 Ti-0 八面体可以提供两个负电 荷。通过元素的化学成分分析,可知 Na₄Ti₄Si₃O₁₀ 中 Na 和 Ti 的摩尔比为 1:1, 而每个 Na⁺只能平衡一个 负电荷,所以4对称轴形成一个由桥氧联接而成的 四个对称钛原子组成的簇。四钛组成的单个八面体 簇的结构如图 2 所示。这种结构在反应物烷基钛酸 盐中也存在^[8]。沿着3个晶轴方向通过硅酸盐群将 这些钛原子簇连接起来,在这些连接中也涉及到0 原子, 钛原子簇位于立方单元的角落, 而硅酸盐群位 于它们之间 x = 1/2 处, 在三个方向都存在相同的 结构、硅酸盐四面体的键长和键角非常规则。因为 晶体具有对称性,这种结构会形成三维孔道,包括被 截去的立方空穴。空穴内充满了水分子和电中性的 阳离子。孔是由钛原子和硅原子交替组成。

图 2 Ti-O 八面体簇结构图 Fig. 2 Structure of Ti-O cluster of tetrameric unit

2.3 Na₄Ti₄Si₃O₁₀ 的比表面积、孔结构和孔径分布 分析

表 4 是样品的 BET 比表面积、孔容、平均孔径 和孔径分布数据。由表 3 可以看出样品具有较大的 比表面积,达到 121.0375m² · g⁻¹。需要注意的是 Average pore diameter 是根据公式 4V/A(V 为孔容 积, A 为 BET 表面积) 计算出来的,即所谓的平均孔 径,它与由脱附数据得到的孔径大小有一定的区别 (见图 4)。这是因为微孔越多,表面积 A 越大,孔容 积 V 也越大,两者相除,可以定性的认为,会在某种 程度上抵消微孔(<10nm)、即不可全部利用的部分 的孔容积对平均孔径的影响,因此孔径最概然分布 值要大于平均孔径。

图 3 是样品的吸附 - 脱附等温线,其吸附等温 线和朗格缪尔型Ⅲ型^[9]吸附等温线比较接近,因而 可知其孔结构是两端都开放的管状毛细孔。这种开 放的孔结构有利于分子的扩散和反应物分子在内表 面的吸附。样品的滞后环中,吸附和脱附随曲线相对 压力的变大急剧变陡。与吸附曲线和脱附曲线分离 处对应的是毛细管凝聚现象。

图 4 是样品的孔体积随孔径大小的分布曲线, 从图中可以看出,样品的孔径分布集中在 2~100nm 之间,而且直径小于 50nm 的微孔占据了相当大的 一部分。

2.4 Na4Ti4Si3O10 的 Laman 光谱分析

拉曼光谱对锐钛矿型 TiO₂ 非常敏感,其特征谱 带在 144,386,513,637cm⁻¹。在含钛沸石合成中,不 进入骨架的钛沉积为氧化钛,经培烧变为锐钛矿型 TiO₂,因此判定它的存在与否可以推断出钛原子是

表 4 BET 比表面积、孔容、平均孔径和孔径分布

Table 4 BET Surface Area, Total Pore Volume, Average Pore Diameter and Pore Diameter Distribution of the Sample

sample	BET surface area/ $(m^2 \cdot g^{-1})$	total pore volume / (cm ³ · g ⁻¹)	average pore diameter/nm	most probable diameter/nm
Na4Ti4Si3O10	121.0375	0. 265397	8.7	15 ~ 30

· 122 ·

否进入沸石骨架^[10]。Na₄Ti₄Si₃O₁₀的拉曼光谱如图 5 所示,图中没有发现锐钛矿型 TiO₂的特征谱带,并 且在 970cm⁻¹附近出现一强峰和 1000~1125cm⁻¹ 之间出现一弱峰,这些规律都是钛进入骨架结构的 有利证据。图中 521cm⁻¹处的强峰是 Si-O 键伸缩振 动的产生的。

图 4 Na₄Ti₄Si₃O₁₀ 的孔体积 - 孔径曲线

Fig. 5 Raman spectrum of Na₄Ti₄Si₃O₁₀

2.5 Na₄Ti₄Si₃O₁₀ 的表面形貌和微观结构

Na₄Ti₄Si₃O₁₀ 的 SEM 照片见图 6。SEM 分析结果 表明, Na₄Ti₄Si₃O₁₀ 样品颗粒很细, 粉体的尺寸为纳 米级。在晶粒周围未观察到无定形物质的存在。由 于纳米晶体具有较大的比表面积和表面自由能, 因 此基本上呈团聚状态, 所以不能从 SEM 照片中看出 颗粒的具体形貌。

图 7 是 Na₄Ti₄Si₃O₁₀ 的 TEM 照片。合成样品的 尺寸为 20nm 左右, 颗粒呈规则的四方形。

2.6 Na4Ti4Si3O10 性能

2.6.1 化学稳定性

将 Na₄Ti₄Si₃O₁₀ 分别置于去离子水、醋酸溶液、 1mol・L⁻¹、3mol・L⁻¹ HNO₃ 溶液中,温度分别控制 在 20℃、40℃、60℃,80℃,时间 5 个月。用 X 衍射分

图 6 Na₄Ti₄Si₃O₁₀ 的 SEM 照片 Fig. 6 SEM photograph of Na₄Ti₄Si₃O₁₀

图 7 Na₄Ti₄Si₃O₁₀ 的 TEM 照片 Fig. 7 TEM photograph of Na₄Ti₄Si₃O₁₀

析结果见表 5。

由表 5 可见, Na₄Ti₄Si₃O₁₀基本上与水不发生反 应; 在高温下与腐蚀性的溶液长期接触可使 NST 的 性能降低。在醋酸溶液中 60℃时, Na₄Ti₄Si₃O₁₀转变 成为锐钛矿型的 TiO₂和其它不确定的非晶化合 物。在与浓度为 1mol·L⁻¹的 HNO₃溶液接触(温度 为 60℃)时, Na₄Ti₄Si₃O₁₀没有明显的降解; 而当温度 高于 60℃ (1mol·L⁻¹ HNO₃溶液)或当 HNO₃浓度 为 3mol·L⁻¹时, Na₄Ti₄Si₃O₁₀ 若长期与腐蚀性溶液一起贮存 时, 温度应在 40℃以下。

2.6.2 热稳定性

Na₄Ti₄Si₃O₁₀的差热和热重分析曲线见图 8。 Na₄Ti₄Si₃O₁₀的差热曲线在 180℃有一个小的吸收 峰,主要是由于结构水丧失导致的。温度继续升高至 300℃之后,曲线趋于稳定平滑。其热重曲线在 20~ 250℃区间很陡;温度高于 250℃后,曲线趋于平缓; 总失重量低于 15%。另外在 350℃下加热 Na₄Ti₄Si₃O₁₀,3个小时后测其 X 衍射图,与未加热前

于 波等:新型除铯环境材料硅钛酸钠孔道结构化合物(Na,Ti,Si₃O₁₀)合成及结构表征

表 5 Na₄Ti₄Si₃O₁₀ 的化学稳定性分析

· 123 ·

Table 5 Evaluations of Chemical Stability				
test solution	20°C	40°C	60°C	80°C
deionized water	NST	NST	NST	NST
acetic acid	NST	NST	anatase + NST	anatase
1mol·L ⁻¹ HNO ₃	NST	NST	NST	degradation
3mol • L ⁻¹ HNO3	NST	degradation	degradation	degradation

Note: NST is the abbreviation of Na₄Ti₄Si₃O₁₀.

图 8 Na₄Ti₄Si₃O₁₀ 的差热和热重分析曲线 Fig. 8 TGA-DTA curve of Na₄Ti₄Si₃O₁₀

基本相似, 这表明 Na₄Ti₄Si₃O₁₀ 具有良好的热稳定 性。

2.6.3 离子交换性能

图 9 给出了交换体系溶液 pH 与 Na₄Ti₄Si₃O₁₀ 对 Cs⁺分配系数的关系。交换温度为室温,时间为 2d, 溶液中 Cs⁺的浓度为 100ppm。由图 9 可以看出, Na₄Ti₄Si₃O₁₀ 在整个 pH 范围内对铯都有极高的选择 性; pH 值在 3 ~ 9 范围内除铯效果最好, Cs⁺的分配 系数 K_d 最高可达到 60000 以上。即使 pH 降到 1.0 后, Cs⁺分配系数 K_d 仍高达 36500mL · g⁻¹,这一结 果是国内常用的高放废液除铯剂亚铁氰化钛钾 (K_d = 5400mL · g⁻¹)的 6 倍^[111],表明 Na₄Ti₄Si₃O₁₀ 具 有极强的除铯能力,是一种非常有潜力的新型除铯

图 9 pH 值对除铯性能的影响

材料,可以考虑在实际高放废液中作为除铯剂使 用。

3 结 论

(1)合成新型硅钛酸钠孔道结构化合物的化学 式为 Na₄Ti₄Si₃O₁₀。

(2) Na₄Ti₄Si₃O₁₀ 的晶体学数据为: $P4_3$ 、a = b =7.8110Å、c = 11.9735Å、 $\alpha = \beta = \gamma = 90^{\circ}$ 。该化合物 具有三维空间结构,组成基本单元为 Ti-O 八面体簇 和 Si-O 四面体。微观形貌为规整的四方晶粒,粒子 的平均尺寸为 20nm_oNa₄Ti₄Si₃O₁₀ 具有较大的比表面 积,孔结构为两端开放的管状毛细孔。

(3) Na₄Ti₄Si₃O₁₀ 具有良好的化学稳定性和热稳 定性,在整个 pH 范围内,对 Cs⁺都有极高的选择 性。在 0. 1mol ・L⁻¹ HNO₃、100ppm Cs 的水溶液中, 对 Cs 的分配系数仍可高达 36500mL・g⁻¹,是一种 非常有潜力的新型除铯剂。

参考文献

- Lee D. D., Walker J. F., Taylor P. A. Environmental Progress, 1997, 16, 251.
- [2] Anthony R. G., Dosch R. G., Philip C. V. Waste Management, 1993, 13, 503.
- [3] Zheng Z. X., Gu D., Anthony R. G. Ind. Eng. Chem. Res., 1995, 34, 2124.
- [4] Gay R. L., McCoy L. R., Barclay K. M. Waste Management, 1983, 85, 357.
- [5] Casarci M., Gasparini G. M., Grossi G. Journal of Less-Common Metals, 1989, 149, 297.
- [6] Dozol J. F., Simon N., Lamare V., Rouquette H., Eymard S., Tournois B., Mare D. D. Sep. Sci. Tech., 1999, 34, 877.
- [7] Miller J. E., Brown N. E. SAND 97-0771, California, 1997, p213.
- [8] Lehto J., Harjula R. Solvent Extraction and Ion Exchange, 1987, 5, 343.
- [9] Yan G. M., Zhang Q. Y., Gao J. Z. Absorption and Conden-

· 124 ·

第 19 卷

sation, Volume 3, 1986, p113.
[10]Todd T. A., Brewer K. N., Herbst R. S. ISEC'96, Melbourne, Australian, 1996, 1303. [11]XU Shi-Ping(徐世平), JIANG Chang-Yin(姜长印), SONG Chong-Li(宋崇立) He Huaxue Yu Fangshe Huaxue (Journal of Nuclear and Radiochemistry), 1996, 18, 100.

Synthesis and Structure Characterization of a Novel Cs Removal Open-Framework Silicotitanate(Na₄Ti₄Si₃O₁₀)

YU Bo* CHEN Jing SONG Chong-Li

(Institute of Nuclear Energy Technology, Tsinghua University, Beijing 100084)

A novel open-framework silicotitanate $(Na_4Ti_4Si_3O_{10})$ with high surface area has been synthesized by a combination of sol gel-hydrothermal method. The crystal structure of $Na_4Ti_4Si_3O_{10}$ was characterized by X-ray diffraction, scanning electron microscope, transmission electron micrograph and so on. The compound is tetragonal, $P4_3$, a = b = 7.8110Å, c = 11.9735Å, $\alpha = \beta = \gamma = 90^\circ$. $Na_4Ti_4Si_3O_{10}$ has a three dimensional framewok constitution of Ti-O octahedral clusters and Si-O tetraheda. The chemical stability, thermal stability and the cesium removal property of $Na_4Ti_4Si_3O_{10}$ were also studied.

Keyword:	sol gel-hydrothermal method	silicotitanate	characterization	distribution coefficient
----------	-----------------------------	----------------	------------------	--------------------------