第2期 2003年2月 Vol. 19, No. 2 Feb.,2003

研究简报

Anderson 结构稀土钼铬多金属氧酸盐的合成与表征

郭元茹^{1,2} 周百斌^{*,1,2} 马慧媛¹ 徐学勤¹ 韦永德²
(¹哈尔滨师范大学化学系,哈尔滨 150080)
(²哈尔滨工业大学应用化学系,哈尔滨 150001)

关键词: Anderson 结构 多金属氧酸盐 稀土元素 分类号: 0614.33 0632.4

Anderson 结构化合物属于 1:6(杂原子:配位原 子)系列多金属氧酸盐,Anderson 于 1937 年首先对 此类化合物的结构进行了推测^[11],1974 年 Evans 确 定了第一个具有 Anderson 结构的杂多阴离子 [TeMo₆O₂₄]^{6-[2]}。此后,有关此类结构的多金属氧酸 盐相继被合成出来,但对含稀土的三元 Anderson 结 构多金属氧酸盐未见报道。本文报道了稀土处于内 界的三元 Anderson 结构多金属氧酸盐的合成方法, 同时用化学方法和 ICP 进行了组成分析,用现代分 析测试方法进行了表征。该系列化合物的成功合成, 将与课题组以前的工作构成一个整体,有利于系统 研究合成技术和稀土化合物的合成规律。本文还对 该系列化合物热稳定性也做了简明的阐述。

1 实验部分

1.1 (NH₄)₆[CrMosLn(OH₂)₂O₂₄H₆]・ xH₂O 的合成

以含镧化合物的合成为例,按 La: Cr: Mo(mol) =1:1:5 比例,称取(NH₄)₂Mo₇O₂₄ · H₂O 3g,溶于 40 mL 水中,加热至沸,稍冷却后,用1:1H₂SO4 调节溶 液 pH 2.5~3.0。将一定量的 La(NO₃)₃ 加入到 3.5 mL 20%~25%的硫酸铬水溶液中,同时加入 20mL 水溶解。将混合液缓慢加入到热的钼酸铵溶液中,于 80℃恒温反应 24h.有紫红色晶体析出。

同法合成稀土元素为铈、镨、钕、钐、钆、镱的化 合物。

1.2 仪器与试剂

红外光谱用美国 MATTSON 公司产 FTIR --1300E 付里叶变换红外分光光度计测定,以 KBr(SP 纯)压片; XPS 谱用英国 VG 公司产 ESEALAB MARK Ⅱ Mg Kα X-RAY 测试; 电子光谱用日本岛津产 UV-265 型紫外可见自动记录分光仪测定;差热 - 热 重是在中国北光产 LCT-1 型 TG-DTA 热分析仪上测 定,升温速率为 10℃・min⁻¹;等离子体光谱(ICP)用 PLASMA-SPEC(1) 电感耦合等离子体发射光谱仪测 定; 'H NMR 在美国 Varain Infinty Plus 400MHz 上完 成。所用试剂均为分析纯。

1.3 化合物的组成分析

铬用络合滴定法测定,以 NH₄F 掩蔽稀土元素, EDTA 作络合剂, 铬黑 T 为指示剂,在 NH₃-NH₄Cl 缓 冲体系中,以 Mn²⁺标准溶液返滴定铬;稀土元素的 测量采用的是经典的草酸盐重量法, 铬与钼均与草 酸生成稳定可溶的络合物, 不影响稀土的测定; 钼采 用的是 α- 安息香肟重量法, 酸性条件下,稀土与三 价铬均不产生干扰^[3]。其测定结果与 ICP 发射光谱 测定结果一致, 与理论值相符。结晶水由热重曲线测 定。元素分析结果见表 1。

2 结果与讨论

2.1 化合物的合成

由于目标产物对 pH 非常敏感, 当溶液 pH 低于 2 时, Anderson 结构将被破坏, 生成不溶于水的物

收稿日期:2002-07-14。收修改稿日期:2002-09-27。

国家自然科学基金资助项目(No. 29671009)。

^{*}通讯联系人。E-mail: zgzbb@0451.com

第一作者:郭元茹,女,27岁,博士研究生;研究方向:多酸化学。

· 184 ·

第 19 卷

表丨	化合物	NH₄)6[CrMosLn(OH2)2O24H6]・nH2O 的元素分析
	Table 1	Elemental Analyses of the Commission (M)

Table 1 Elemental Analyses of the Complexes (%)					
complex	NH₄	Cr	Ln	Mo	H ₂ O
$(NH_4)_6[CrMo_5La(OH_2)_2O_{24}H_6] \cdot 15H_2O$	7.53(7.52)	3.49(3.61)	9.62(9.65)	33.35(33.34)	18.31(18.76)
$(NH_4)_6[CrMo_5Ce(OH_2)_2O_{24}H_6] \cdot 16H_2O$	6.29(6.26)	3.52(3.61)	9.69(9.73)	33.34(33.31)	20.40(20.00)
(NH4)6[CrMosPr(OH2)2O24H6] · 21H2O	7.02(6.98)	3.30(3.36)	9.01(9.10)	31.02(30.97)	23.85(24.40)
(NH4)6[CrM05Nd(OH2)2O24H6] • 15H2O	7.53(7.49)	3.54(3.60)	9.96(9.98)	33.24(33.22)	19.20(18.70)
$(NH_4)_6[CrMo_5Sm(OH_2)_2O_{24}H_6] \cdot 16H_2O$	7.45(7.37)	3.50(3.54)	10.18(10.24)	32.72(32.67)	20. 16(19. 61)
(NH4)6[CrM05Gd(OH2)2O24H6] • 17H2O	7.27(7.24)	3.42(3.48)	10.49(10.53)	32.15(32.12)	20.25(20.49)
(NH ₄) ₆ [CrMosYb(OH ₂) ₂ O ₂₄ H ₆] · 14H ₂ O	7.47(7.44)	3.52(3.57)	11.83(11.89)	32.98(32.97)	17.80(17.32)

The data in the blankets are theoretical values.

质; 当溶液 pH 高于 3.5 时, 稀土离子易水解, 产物 含有绿色杂质, 得不到纯净的产物。同时, 反应温度 和原料滴加速度也对反应有影响。经实验得出: 温 度为 80℃、反应 24h、快速滴加原料条件下, 所得的 产品纯度好, 产量高。

2.2 红外光谱

Anderson 结构多金属氧酸盐一般在 500~1000 cm⁻¹之间有三个吸收带^[4],这是因为在 Anderson 结构杂多阴离子中存在三种氧原子: 12 个端 基氧 (O_d), 6 个双角顶共用氧 (O_b), 6 个三角顶共 用氧 (O_c)。在 B 型结构中,和杂原子相连的角顶氧 以-OH形式存在。不同种类的氧原子与金属之间的 键长不同,振动频率不同,因此有三个吸收带。 (NH₄)₆[CrMo₅LnO₂₄H₆] · xH₂O 系列化合物的 IR 光 谱见图 1, 特征谱带归属见表 2。从表 2 和图 1 中 可以看出,该系列化合物均有三组特征谱带,表明具 有 Anderson 结构特征。化合物均在 950nm、920nm 有两个峰、归属于 Cr-O_d 伸缩振动峰。相对于母体 (NH₄)₃[CrMo₆O₂₄H₆] 表中 Cr-O_d 伸缩振动峰发生了 蓝移,这主要是由于稀土元素存在空的4f和5d轨 道,可与端基氧进行配位所致。890nm 附近的尖峰为 Mo-O_b-Mo 的伸缩振动峰; Mo-O_e-Cr 的伸缩振动峰在 650~660nm 处,这两个振动峰均发生了蓝移,主要

 $(NH_4)_6[CrMo_5Sm(OH_2)_2O_{24}H_6]$

 $(NH_4)_6$ [CrMo₅Gd(OH₂)₂O₂₄H₆]

 $(NH_4)_6[CrMo_5Yb(OH_2)_2O_{24}H_6]$

892.34

893.38

891.40

是由于稀土元素取代一个钼后,导致化合物对称性

653.68,575.62

650. 67, 574. 69

651.99,576.32

表 2 配合物的红外光谱数据

		-	
complex	VasCr-0.	VanMu-Ox-Mu	ν _{usMo-O,-Cr}
(NH4)3[CrM06O24H6]	944. 19, 922. 99	890. 38	651. 10, 575. 01
(NH4)6[CrM05La(OH2)2O24H6]	948. 21, 926. 12	894.60	655. 16, 576. 20
(NH4)6[CrMosCe(OH2)2O24H6]	948. 12, 926. 00	894. 56	656. 23, 571. 88
(NH4)6[CrM05Pr(OH2)2O24H6]	947. 79, 925. 00	894.30	655. 85, 575. 40
(NH4)6[CrM05Nd(OH2)2O24H6]	948. 32, 926. 00	894.66	658, 97, 575, 79

945. 54, 924. 24

946. 30, 924. 61

944. 25, 923. 55

Table 2 IR Data of the Complexes (cm⁻¹)

· 185 ·

降低所致。

2.3 紫外光谱

在 pH 2~3 的稀硫酸水溶液中,测试了所 有化合物的紫外光谱,结果见表 3, (NH₄)。[CrMosLa (OH₂)₂O₂₄H₆]的 UV 谱图见图 2a。

表 3 配合物的紫外光谱

Table 3 UV Data of the Complexes (nm)

complex	λо, м	λо, → м	λо, → м
(NH4)3[CrM06O24H6]	193. 5	211.5	242.1
(NH4)6[CrM05La(OH2)2O24H6]	193. 2	210.0	240. 0
(NH4)6[CrM05Ce(OH2)2O24H6]	193.8	209. 8	239.6
(NH4)6[CrM05Pr(OH2)2O24H6]	192.6	209. 0	239. 8
(NH4)6[CrM05Nd(OH2)2O24H6]	193. 2	209. 4	241.6
(NH4)6[CrM05Sm(OH2)2O24H6]	193.0	210.6	242.6
(NH4)6[CrM05Gd(OH2)2O24H6]	193. 2	211.2	242. 4
(NH4)6[CrM05Yb(OH2)2O24H6]	193. 4	210.6	240. 4

从表中结果可以看出,合成化合物与母体铵盐的紫外吸收谱带相似,均产生三条吸收带。其中 O_d $\rightarrow M$ 、 $O_a \rightarrow M$ 和 $O_b \rightarrow M$ 均发生蓝移,这是由于 Anderson 结构杂多化合物有两个顺式端基氧,距离 较近,孤对电子相互排斥,致使 $p\pi$ - $d\pi$ 电子跃迁吸 收能量增加,导致谱带蓝移。与 IR 光谱分析结果一 致。

2.4 'H NMR 谱图分析

化合物的粉末 'H NMR 谱见图 2b。由图 2b 可以 看到, 化合物在 δ = 7. 14ppm 处有一个峰, 该峰为与 O_b 相连的 H 峰^[4], 进一步证明化合物 Anderson B 型 结构。

图 2 (NH4)6[CrMo5La(OH2)2O24H6]谱图

Fig. 2 Spectra of (NH₄)₆[CrMo₅La(OH₂)₂O₂₄H₆] (a): UV spectrum, (b): ¹H NMR

配合物中钼, 铈元素的光电子能谱见图 3, 各元 素的结合能见表 4。

图 3 (NH₄)₆[CrMo₅Ce(OH₂)₂O₂₄H₆]的 XPS 谱

Fig. 3 XPS spectra of $(NH_4)_6[CrMo_5Ce(OH_2)_2O_{24}H_6]$ (a) Mo3 d (b) Ce3 d

由表 4 可以看出, 化合物 (NH4) 。[CrMosCe (OH₂)₂O₂₄H₆]存在两种氧, 一种为表面吸附氧, 结合能为 532. 2eV; 一种为配合物结构中参与成键的二价氧离子, 结合能为 530. 4eV; 钼离子的结合能为 232. 8eV, 可推断出钼为六价离子; 铈的结合能为 884. 4eV, 为三价的铈; 铬的结合能是 577. 4eV, 是三价的铬离子。其它稀土元素配合物的能谱相似, 只是

衣 4	配合物中各元素的结合能	

Table 4	Binding Energies of th	e Elements in the	Complexes (eV)
---------	------------------------	-------------------	----------------

complex	01 s	Mo3 d	Cr2 <i>p</i>	Ln3 d
(NH4)6[CrMosCe(OH2)2O24H6]	530. 4, 532. 2	232. 8	577.4	884.4(881.9)
(NH4)6[CrM05Pr(OH2)2O24H6]	530. 4, 532. 4	233. 2	577.5	933.6(933.1)
(NH4)6[CrM05Nd(OH2)2O24H6]	530. 7, 532. 4	233. 2	577.8	984. 8(982. 2)

The data in the blankets are theoretical values.

稀土元素的结合能不同。此外,杂多配合物中 Ln3 d 的结合能比相应稀土氧化物中 Ln3 d 的结合能高, 这是由于稀土离子与杂多配合物配位后,电荷密度 下降,导致结合能增加,进一步证明稀土元素处于 化合物的内界,形成了新的化合物。

2.6 热解性质

该系列化合物的 TG-DTA 热分析曲线十分相 (4), 说明化合物具有相似的结构。(NH₄)。[CrMosNd (OH₂) 2O24H6] · 15H2O 的 TG-DTA 热分析曲线见图 4。由图中可以看到配合物(NH₄)。[CrMosNd(OH2)2 O24H6] · 15H2O 有四步失重,在 DTA 曲线上对应四 个吸热峰,表明失去的均为水分子。283℃以前的失

- 图 4 (NH₄)₆[CrMo₅Nd(OH₂)₂O₂₄H₆] · 15H₂O 的 TG-DTA 曲线
- Fig. 4 TG-DTA curve of $(NH_4)_6[CrMo_5Nd(OH_2)_2O_{24}H_6]$ · 15H₂O

重率为15.54%,大约失去10个水分子,该水分子 为沸石水和结晶水,对应于92℃和126℃两个吸热 峰;在283~486℃之间失去两个结构水,这两个水 分子为与稀土离子配位的水,从而使稀土离子仍为 稳定的八面体配位;486℃~500℃失去最后3个水 分子,该水分子为组成水,与Anderson B型结构中含 6-OH 基一致。同时配合物均在490~500℃有一个 放热峰,根据文献^[5]可知,为化合物的分解温度范 围。

参考文献

- [1] XIANG Bin(相 彬), GUO Yuan-Ru(郭元茹), MA Hui-Yuan(马慧媛), ZHOU Bai-Bin(周百斌) Huaxue Tongbao (Chemistry), 2002, (1), W007.
- [2] Evans H. T., Gatehouse B. M. J. Chem. Soc. Dalton Trans, 1975, (2), 505.
- [3] GUO Yuan-Ru(郭元茹)、ZHOU Bai-Bin(周百斌)、MA Hui-Yuan(马慧媛) Harbin Shifan Daxue Ziran Kexue Xuebao(Natural Sci. J. Haerbin Nor. Univ.), 2001, 17 (2), 72.
- [4] WANG En-Bo(王恩波), HU Chang-Wen(胡长文), XUE Lin(许 林) Introduction of Polyacid Chemstry(多酸化学 导论), Beijing: Beijing Industry Press, 1998, p4.
- [5] WANG Zuo-Ping(王作屏), NIU Jing-Yang(牛景扬), XUE Lin(许 林) Huaxue Xuebao(Acta Chim. Sin.), 1995, (53), 757.

Synthesis and Characterization of Rare Earth Elements-Substituted Chromium-Molybdates of the Anderson Type

GUO Yuan-Ru^{1,2} ZHOU Bai-Bin^{*,1,2} MA Hui-Yuan¹ XU Xue-Qin¹ WEI Yong-De² (¹Department of Chemistry, Harbin Normal University, Harbin 150080) (²Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001)

A new kind of Anderson-type chromium-molybdates containing the rare earth elements are synthesized, which have the general molecular formula of $(NH_4)_6[CrMo_5Ln(OH_2)_2O_{24}H_6] \cdot xH_2O$ (Ln = La, Ce, Pr, Nd, Sm, Gd and Yb). The components of these heteropoly complexes are determined by chemical elemental analysis, ICP and TG-DTA. And IR, UV, ESR, XPS and ¹H NMR are also applied to characterize the complexes as well. The results indicate that the structures of these complexes are Anderson B type and the rare earth elements are in the inner sphere of the heteropoly salts. The thermal stabilities of these complexes studied by TG-DTA show that the range of pyrolysis temperature is between 490°C and 500°C.

polyoxometallates

Keywords:

Anderson structure

rare earth element