第2期 2003年2月 Vol. 19, No. 2 Feb., 2003

研究简报

配合物 $Cu(C_{14}H_{10}N_2O_2)(C_5H_5N)$ 的合成和晶体结构

卢文贯*、1 冯小龙² 刘宏文¹ 王少玲¹
(1韶关学院化学系,韶关 512005)
(2中山大学分析测试中心、广州 510275)

关键词:	Schiff 碱	酰腙	铜(II)配合物	晶体结构
分类号:	0614. 121			

酰腙类配体是众多 Schiff 碱中的一种,它是以 氮和氧原子为配位原子,与生物环境较接近,形成配 合物后的生物活性比配位前明显增加,其配合物有 着广泛的生物和药物活性^[1-6]。王积涛等^[7]利用水 杨醛缩苯甲酰腙及其衍生物与二苯基二氯化锡(M)合 成了一系列具有抗癌活性的五配位金属有机锡(M)化 合物,高山等^[8-10]则利用水杨醛缩苯甲酰腙及其衍 生物合成了五配位的钒氧酰腙配合物。铜是人体必 需的微量元素,它作为配合物的活性中心离子存在 于具有生物功能的蛋白质分子中,其配合物对生命 体系有特殊的生物活性和催化作用,而且具有丰富 多彩的立体结构^[11]。同时,在不少生物配体中都含 有芳环及氮、氧配位原子,且与铜(II)离子配位的原子 大多也是氮、氧原子。因此,研究含酰腙配体的铜(II) 配合物的合成、结构与性质的关系十分重要。

本文报道铜(II)与水杨醛缩苯甲酰腙的配合物 Cu(C₁₄H₁₀N₂O₂)(C₅H₅N)的合成及结构表征。

1 实验部分

1.1 试剂和仪器

水杨醛、苯甲酰肼、吡啶、醋酸铜及其他有机溶 剂均为市售分析纯试剂,直接使用。

元素分析用 Vario EL CHNS-O 元素分析仪测 定, 红外光谱用 Nicolet-360 FT-IR 光谱仪记录 (4000~400cm⁻¹, KBr 压片法), 热重分析用 Netzsch TG-209 热重分析仪测定, 样品重量 3.52mg, 空气 氛,升温速度 10℃・min⁻¹。Bruker SMART 1000 CCD 単晶衍射仪。

 1.2 配体 H₂L: C₁₄H₁₂N₂O₂(水杨醛缩苯甲酰腙)的 合成

将 2.72g(20.0mmol) 水杨醛溶于无水乙醇中, 慢慢加入含 2.44g(20.0mmol) 苯甲酰肼的无水乙醇 溶液,于室温下搅拌 2h,有白色沉淀生成,过滤,即 得粗产品,用冷的无水乙醇洗涤数次,真空干燥,产 率 83%,化学式为 C₁₄H₁₂N₂O₂,元素分析结果(括号 内为计算值)/%:C 69.84(70.00),H 5.26(5.00), N 11.91(11.67)。

1.3 标题配合物的合成及单晶培养

将 0.48g(2mmol) 配体 $C_{14}H_{12}N_2O_2$ 在微热下溶 于 30mL 无水乙醇中, 搅拌下慢慢加入含 0.40g (2mmol) 醋酸铜的水溶液, 于 60℃下搅拌回流 8h, 冷却, 过滤, 将所得草绿色固体依次用水和无水乙醇 洗涤, 并放置于硅胶干燥器中干燥保存。然后, 将少 量固体溶解在无水乙醇和吡啶的混合溶剂中(V: V, 1/1), 两个星期后得到柱状黑紫色标题配合物单 晶。配合物的化学式为 $C_{19}H_{15}N_3O_2Cu$, 元素分析结果 (括号内为计算值)/%: C 59.76(59.84), H 4.02 (3.94), N 10.86(11.02)。

1.4 晶体结构的测定

选取大小为 0.48×0.36×0.35mm³ 的单晶,室 温下[(20±2)℃]在带有石墨单色器的 Bruker SMART 1000 CCD 单晶衍射仪上进行衍射实验。用

收稿日期:2002-08-22。收修改稿日期:2002-11-19。

^{*} 通讯联系人。E-mail: lwg@ sgu. edu. cn

第一作者:卢文贯,男,37岁,副教授;研究方向:配位化学和金属有机化学。

第2期

Mo Kα 射线 (0.071073nm), 以 $\omega/2\theta$ 扫描方式在 1.29° < θ < 27.12°范围内收集到 19186 个衍射强 度数据,其中 7154 个为独立衍射点($R_{int} = 0.0218$), 被用来进行结构分析和修正。晶体结构由直接法解 出[SHELXS-97 (Sheldrick, 1997)],用全矩阵最小二 乘法修正结构[SHELXL-97(Sheldrick, 1997)],氢原 子坐标由理论计算加入。表 1 给出标题配合物的晶 体学数据。

CCDC: 193111.

表 1 标题配合物的晶体学数据

Table 1	Crystal	Structure	Parameters	of	the	title	Comple
Table 1	Crystal	Structure	Parameters	of	the	title	Comple

crystal system	monoclinic
space group	P21/c
a/nm	1.6362(9)
b∕nm	1.7140(9)
c/nm	1.2255(7)
β/(°)	105. 168(9)
volume/nm ³	3.317(3)
Z	8
density(calculated) $/(g \cdot cm^{-3})$	1. 525
absorption coefficient $\mu(Mo K\alpha) / mm^{-1}$	1. 334
F(000)	1560
crystal size/mm ³	0. 48 × 0. 36 × 0. 35
θ range for data collection	1. 29° to 27. 12°
limiting indices	$-20 \le h \le 20, -21 \le k \le 16,$ $-15 \le l \le 10$
reflections collected/unique	19186/7154 [R(int) = 0.0218]
data/restraints/parameters	7154/0/451
goodness-of-fit on F^2	1.033
final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0376$, w $R_2 = 0.0909$
R indices (all data)	$R_1 = 0.0659$, w $R_2 = 0.1056$
largest diff. peak and hole $/(e \cdot nm^{-3})$	390 and - 341

2 结果与讨论

2.1 红外光谱

水杨醛缩苯甲酰腙三齿 Schiff 碱配体在 3433 cm⁻¹ 处出现水杨醛羟基中等强度而宽的 ν_{OH} 吸收 峰,在 3273cm⁻¹ 处出现肼基(-NH-N=)中强而尖锐 的 ν_{NH} 吸收峰,在 1675cm⁻¹ 处出现强而尖锐的吸收 峰则归属为配体中 -CONH- 的 $\nu_{C=0}$ 吸收峰。在标题 配合物 Cu(C₁₄H₁₀N₂O₂)(C₅H₅N)中,这些吸收峰。在标题 配合物 Cu(C₁₄H₁₀N₂O₂)(C₅H₅N)中,这些吸收峰。在标题 配合物 Cu(C₁₄H₁₀N₂O₂)(C₅H₅N)中,这些吸收峰。在标题 取作,在 1594cm⁻¹ 处出现新的强而尖锐的 $\nu_{C=NN=C}$ -吸收峰⁽⁷⁾,又在 1309cm⁻¹ 处出现新的中等强度烯醇 ν_{C0} 吸收峰。表明配体中水杨醛羟基氢直接被铜(II) 取代,而肼基氢 (-NH-N=)则是经过烯醇化后被 铜(II)取代⁽⁸⁻¹⁰⁾。可见,水杨醛缩苯甲酰腙三齿 Schiff 碱配体是失去两个质子后以负二价离子与铜(II)配位 的。配体中 1631cm⁻¹ 处的 $\nu_{C=N}$ 吸收峰在生成配合 物后向低波数方向移动了 18cm⁻¹, 出现在 1613cm⁻¹ 处,表明配体中亚氨基上的氮原子也参与了与铜(II) 的配位 ^[8-10]。配合物中 ν_{Cu-N} 和 ν_{Cu-0} 吸收峰分别出 现在 553cm⁻¹ 和 470cm⁻¹ 附近^[12]。红外光谱分析与 配合物的晶体结构分析结果一致。

2.2 晶体结构

配合物 Cu(C14H10N2O2)(C5H5N)的分子结构和 在晶胞中的堆积示于图 1 和图 2,非氢原子的坐标 及热参数列于表 2,部分键长及主要键角列于表 3。 在每个不对称单元中,存在两个 Cu(C14H10N2O2) (C5H5N)配合物分子,它们的 N2O2 配位平面的二面 角为 10.3°。除了水杨醛缩苯甲酰腙三齿 Schiff 碱配 体与铜(II)所形成的相应键长和键角有些差异外,这 两个分子的几何构型基本相同。本文着重讨论 Cu1 配合物的分子结构。

在配合物 Cu(C14H10N2O2)(C5H5N)的分子结构 中,中心离子铜(II)具有四配位的几何结构,其中水杨

图 1 标题配合物的分子结构图

Fig. 2 Packing diagram of the title complex molecules in a unit cell

半日 贝 川 IIIID.//WWW.CQVID.COII

第19卷

表 2 非氢原子坐标及热参数 表 2 非氢原子坐标及热参数									
Table 2	Nonhydrong	gen Atomic	Coordinates ($\times 10^4$) and	l Equivalen	t Isotopic Di	splacement	Parameters (nm² × 10 ⁵)
atom	x	y	Z	Ueq	atom	x	y	z	Ueq •
Cu(1)	4017(1)	4726(1)	4143(1)	46(1)	C(24)	2603(2)	2859(2)	2192(3)	61(1)
Cu(2)	1147(1)	5300(1)	3275(1)	49(1)	C(25)	2275(2)	3588(2)	1818(2)	50(1)
C(1)	2783(2)	6068(2)	750(3)	61(1)	C(26)	1887(2)	4087(2)	2541(3)	50(1)
C(2)	2466(3)	6534(2)	- 189(3)	80(1)	C(27)	1643(2)	4263(2)	5196(3)	54(1)
C(3)	2080(2)	7227(2)	- 81 (3)	79(1)	C(28)	1316(2)	4768(2)	5900(3)	54(1)
C(4)	2008(2)	7453(2)	958(3)	69(1)	C(29)	1387(2)	4532(2)	7014(3)	66(1)
C(5)	2318(2)	6992(2)	1888(3)	55(1)	C(30)	1116(2)	4985(3)	7762(3)	78(1)
C(6)	2708(2)	6287(2)	1794(2)	44(1)	C(31)	728(2)	5684(3)	7390(3)	78(1)
C(7)	3056(2)	5789(2)	2792(2)	41(1)	C(32)	638(2)	5933(2)	6305(3)	69 (1)
C(8)	3161(2)	5556(2)	5572(2)	49(1)	C(33)	936(2)	5494(2)	5522(3)	52(1)
C(9)	3587(2)	5115(2)	6548(2)	50(1)	C(34)	136(2)	6704(2)	2529(3)	65(1)
C(10)	3368(2)	5266(2)	7558(3)	67(1)	C(35)	- 392(2)	7208(2)	1777(4)	78(1)
C(11)	3766(3)	4900(3)	8548(3)	82(1)	C(36)	- 521(2)	7090(2)	647(4)	82(1)
C(12)	4404(3)	4374(3)	8542(3)	82(1)	C(37)	-113(2)	6494(2)	284(3)	79(1)
C(13)	4634(2)	4208(2)	7572(3)	65(1)	C(38)	414(2)	6019(2)	1070(3)	64(1)
C(14)	4233(2)	4570(2)	6550(2)	51(1)	N(1)	2853(1)	5967(1)	3731(2)	47(1)
C(15)	5076(2)	3340(2)	4157(3)	65(1)	N(2)	3292(1)	5472(1)	4592(2)	45(1)
C(16)	5537(2)	2796(2)	3726(4)	81(1)	N(3)	4602(1)	3880(1)	3495(2)	49 (1)
C(17)	5505(2)	2808(2)	2611(4)	78(1)	N(4)	1990(2)	3861(1)	3590(2)	57(1)
C(18)	5015(2)	3346(2)	1938(3)	68(1)	N(5)	1618(2)	4404(1)	4154(2)	49(1)
C(19)	4574(2)	3875(2)	2399(3)	56(1)	N(6)	529(2)	6114(1)	2179(2)	55(1)
C(20)	2329(2)	3849(2)	775(3)	59(1)	O(1)	3546(1)	5219(1)	2695(2)	49(1)
C(21)	2702(2)	3391(2)	116(3)	71(1)	O(2)	4498(1)	4392(1)	5648(2)	60(1)
C(22)	3027(2)	2673(2)	493(3)	74(1)	O(3)	1488(1)	4711(1)	2109(2)	54(1)
C(23)	2981(2)	2408(2)	1532(3)	73(1)	O(4)	862(1)	5788(1)	4515(2)	60(1)

无机化学学报

 * Ueq is defined as one third of the trace of the orthogonalized U_{η} tensor.

醛缩苯甲酰腙三齿 Schiff 碱配体的负二价离子提供 两个配位氧原子和一个配位氮原子, 吡啶提供一个 配位氮原子。配体与铜(II)所形成的 Cu1-O1、Cu1-O2 和 Cu1-N2 键长值分别为 0. 1935(2) nm、0. 1894(2) nm 和 0.1920(2)nm, 吡啶氮原子与 Cu1 原子之间的 Cul-N3 键长值为 0. 2013(2) nm。相应的四个键角 01-Cu1-N2、02-Cu1-N2、02-Cu1-N3 和 01-Cu1-N3 分别为 81.04(9)°、93.08(10)°、92.66(10)°和 93.95 (10)°。01、02、N2 和 N3 四个配位原子基本上共平 面, Cul 原子偏离该平面 0.00211nm。因此, 由相应 的键长和键角数据可知, Cu1 原子具有扭曲的平 面正方形配位结构、与同为四配位的铜(11)配合物 Cu(C₁₄H₉NO₃)(C₃H₄N₂)^[12]的结构极其相似,已报道 的这类配合物多数具有五配位的四角锥结构[13,14]。 由水杨醛缩苯甲酰腙三齿 Schiff 碱配体提供的 O1、 C7、N1 和 N2 等配位原子和 Cu1 所形成的五元环处 在一个平面上,其最小二乘平面的平均偏差为 0.00163nm,由 02、C14、C9、C8 和 N2 等配位原子和 Cu1 所形成的六元环平面共面性也较好,其最小二

· 208 ·

乘平面的平均偏差为 0. 00413nm, 二平面的二面角 为 5. 1°。

与文献^[13, 14]所报道的铜(II)配合物相比,由于在 水杨醛缩苯甲酰腙三齿 Schiff 碱配体中存在强吸电 子基团并形成了 -C = N-N = C- 共轭双键与苯环的大 共轭体系,降低了配位原子的给电子能力,使中心离 子铜(II)所处的配位场为弱场,而文献^[13, 14]的配体则 形成强场,所以标题配合物中铜(II)为四配位的平面 四边形几何结构,而文献^[13, 14]所报道的配合物为五 配位的四方锥几何结构。

在相邻的两个配合物分子间存在着不同程度的 弱相互作用(图 2、图 3), Cu1A…Cu1B(0.3479nm)、 Cu1A…O2B(0.2814nm)、Cu1B…O2A(0.2814nm)、 Cu1A…N4A(0.3532nm)、Cu1A…Cu2A(0.4641nm)、 Cu2A…N1A(0.2937nm)、Cu2A…N2A(0.3472nm) (A 对称变换为 x, y, z; B 对称变换为 – x, - y, z)。Cu1A…O2B和Cu1B…O2A的这种分子间弱相 互作用,使得 Cu1A与Cu1B两个配合物分子以较弱 的二聚体结构形式结合在一起。

表 3 部分键长及主要键角							
Table	3 Selected Bo	ond Distances(nm) and	Bond Angles() of the Title Complex	x		
Cu(1)-O(2)	0.1894(2)	Cu(1)-N(2)	0.1920(2)	Cu(1)-O(1)	0. 1935(2)		
Cu(1)-N(3)	0.2013(2)	Cu(2)-O(4)	0.1896(2)	Cu(2)-N(5)	0.1919(2)		
Cu(2)-O(3)	0.1947(2)	Cu(2)-N(6)	0.2015(3)	C(6)-C(7)	0.1478(4)		
C(7)-O(1)	0.1289(3)	C(7)-N(1)	0.1313(3)	C(8)-N(2)	0.1282(4)		
C(8)-C(9)	0.1433(4)	C(14)-O(2)	0.1326(4)	C(15)-N(3)	0.1336(4)		
C(19)-N(3)	0.1332(4)	C(25)-C(26)	0.1488(4)	C(26)-O(3)	0.1292(3)		
C(26)-N(4)	0.1311(4)	C(27)-N(5)	0.1289(4)	C(27)-C(28)	0.1423(5)		
C(33)-O(4)	0.1309(4)	C(34)-N(6)	0.1328(4)	C(38)-N(6)	0.1332(4)		
N(1)-N(2)	0.1397(3)	N(4)-N(5)	0.1392(3)				
O(2)-Cu(1)-N(2)	93.08(10)	O(2)-Cu(1)-O(1)	171.72(9)	N(2)-Cu(1)-O(1)	81.04(9)		
O(2)-Cu(1)-N(3)	92.66(10)	N(2)-Cu(1)-N(3)	170.58(9)	O(1)-Cu(1)-N(3)	93.95(10)		
O(4) - Cu(2) - N(5)	92.84(10)	O(4)-Cu(2)-O(3)	174.03(9)	N(5)-Cu(2)-O(3)	81.19(10)		
O(4)-Cu(2)-N(6)	92.49(11)	N(5)-Cu(2)-N(6)	170.53(10)	O(3)-Cu(2)-N(6)	93.44(11)		
C(1)-C(6)-C(7)	120. 4(3)	C(5)-C(6)-C(7)	121.4(3)	O(1)-C(7)-N(1)	124.2(2)		
O(1)-C(7)-C(6)	118.3(2)	N(1)-C(7)-C(6)	117.4(2)	N(2)-C(8)-C(9)	124.0(3)		
C(10)-C(9)-C(8)	117.4(3)	C(14)-C(9)-C(8)	123.5(3)	O(2)-C(14)-C(13)	117.7(3)		
O(2)-C(14)-C(9)	124.1(3)	N(3)-C(15)-C(16)	121.3(3)	N(3)-C(19)-C(18)	122. 5(3)		
C(20)-C(25)-C(26)	120. 5(3)	C(24)-C(25)-C(26)	120.5(3)	O(3)-C(26)-N(4)	124.6(3)		
O(3)-C(26)-C(25)	118.7(3)	N(4)-C(26)-C(25)	116.7(3)	N(5)-C(27)-C(28)	124.5(3)		
C(29)-C(28)-C(27)	117.9(3)	C(33)-C(28)-C(27)	122.7(3)	O(4)-C(33)-C(32)	118.4(3)		
O(4)-C(33)-C(28)	124.8(3)	N(6)-C(34)-C(35)	122.0(4)	N(6)-C(38)-C(37)	122.5(4)		
C(7)-N(1)-N(2)	108.9(2)	C(8)-N(2)-N(1)	117.5(2)	C(8)-N(2)-Cu(1)	127.6(2)		
N(1)-N(2)-Cu(1)	114.94(17)	C(19)-N(3)-C(15)	118.1(3)	C(19)-N(3)-Cu(1)	120.5(2)		
C(15)-N(3)-Cu(1)	121.3(2)	C(26)-N(4)-N(5)	109.2(2)	C(27)-N(5)-N(4)	117.5(3)		
C(27)-N(5)-Cu(2)	127.6(2)	N(4)-N(5)-Cu(2)	114.86(19)	C(34)-N(6)-C(38)	118.1(3)		
C(34)-N(6)-Cu(2)	120.8(2)	C(38)-N(6)-Cu(2)	120.5(2)	C(7)-O(1)-Cu(1)	110.71(17)		
C(14)-O(2)-Cu(1)	126.78(19)	C(26)-O(3)-Cu(2)	109.86(19)	C(33)-O(4)-Cu(2)	127.2(2)		

卢文贯等:配合物 Cu(C14H10N2O2)(CsHsN)的合成和晶体结构

· 209 ·

- 图 3 CulA 与 CulB 配合物分子间以 Cu…O 弱相互 作用形成的二聚体
- Fig. 3 Dimer of complexes Cu1A and Cu1B through Cu…O interactions

2.3 热分析

分析标题配合物 Cu(C₁₄H₁₀N₂O₂) (C₅H₅N) 的 TG-DTG 分析曲线,可见配合物的热分解过程分为 三个阶段,其起始分解温度为 82.0℃,终止分解温 度为 472.0℃。由失重百分率推测,配合物第一阶段 (82.0~237.6℃) 失去的是苯甲酰肼中的苯基 (C₆H₅)部分,失重率 20.43%,理论值 20.21%。第二 阶段(237.6~363.8℃)失去的是吡啶和苯甲酰肼中 的剩余部分(C₅H₅N+CON₂),失重率 36.07%,理论 值 35.43%。第三阶段(363.8~472.0℃)失去最后 部分(C₇H₅),变成 CuO,失重率 23.69%,理论值 23.36%。残余 CuO 含量,实测值 21.15%,理论值 21.00%。从以上数据可以看出,配合物失重率的实 测值与理论计算值基本符合,进一步论证了我们的 结构是正确的。

参考文献

- [1] Ainscough E. W., Brodie A. M., Dobbs A. J. et al Inorg. Chim. Acta, 1998, 267, 27.
- [2] Liu S. X., Gao S. Polyhedron, 1998, 17(1), 81.
- [3] Ranford J. D., Vittal J. J., Wang Y. M. Inorg. Chem., 1998, 37, 1226.
- [4] Nawar N., Hosny N. M. Trans. Met. Chem., 2000, 25, 1.

· 210 · 无 机化 学 报 第19卷 学 [5] XIAO Wen(肖 文), ZHANG Hua-Xin(张华新), LU [10]GAO Shan(高 山), LIU Shi-Xiong(刘世雄) Yingyong Huaxue(Chinese J. Appl. Chem.), 2001, 18(2), 161. Zhong-Lin(卢忠林) et al Zhongshan Daxue Xuebao, Ziran [11] Khan M. F., Ahmad P. M. et al Wuji Huaxue Xuebao Kexue Ban (Acta Scientiarum Naturalium University Sunyatseni), 2001, 40(1), 39. (Chinese J. Inorg. Chem.), 1998, 14(1), 29. [12]GAO Shan(高山), SHI Zhan(施 展), HUA Jia(华 [6] Thompson L. K., Matthews C. J., Zhao L. et al J. Chem. Soc., Dalton Trans., 2001, 2258. 佳) et al Gaodeng Xuexiao Huaxue Xuebao (Chem. J. [7] Wang J. T., Liu F. Q., Zhang Y. W. et al J. Organomet. Chin. Univ.), 2000, 21(2), 177. Chem., 1989, 375, 173. [13]ZHANG Wen-Xing(张文兴), LI Jian(李 健), SI Shu-Feng(司书峰) et al Wuji Huaxue Xuebao(Chinese J. Inorg. [8] Gao S., Weng Z. Q., Liu S. X. Polyhedron, 1998, 17(20), Chem.), 1999, 15(5), 573. 3595. [14] NIU De-Zhong(牛德仲), MU Lai-Long(沐来龙), LU Zai-[9] GAO Shan(高山), LIU Shi-Xiong(刘世雄) Gaodeng

- Xuexiao Huaxue Xuebao (Chem. J. Chin. Univ.), 2000, 21 (5), 671.
- [14] NIU De-Zhong(牛德仲), MU Lai-Long(沐来龙), LU Zai-Sheng(路再生) et al Jiegou Huaxue(Chinese J. Struct. Chem.), 2002, 21(1), 55.

Synthesis and Crystal Structure of Complex Cu(C₁₄H₁₀N₂O₂)(C₅H₅N)

LU Wen-Guan*¹ FENG Xiao-Long² LIU Hong-Wen¹ WANG Shao-Ling¹

(1 Department of Chemistry, Shaoguan University, Shaoguan 512005)

(² Center of Analysis and Measurement, Zhongshan University, Guangzhou 510275)

The novel copper (II) complex with salicylaldehyde benzoylhydrazone and pyridine ligands, $Cu(C_{14}H_{10}N_2O_2)$ (C₅H₅N), has been synthesized and characterized by elemental analysis, IR and thermal analysis. The crystal structure of the title complex has been determined by single crystal X-ray diffraction techniques. The crystal belongs to monoclinic with space group $P2_1/c$. The cell parameters are: a = 1.6362(9) nm, b = 1.7140(9) nm, c =1.2255(7) nm, $\beta = 105.168(9)^\circ$, V = 3.317(3) nm³, Z = 8, $D_c = 1.525g \cdot cm^{-3}$, $\mu(Mo K\alpha) = 1.334 mm^{-1}$, F(000) = 1560. The structure was refined to final $R_1 = 0.0376$, $wR_2 = 0.0909$. The copper (II) ion lies in a distorted square-planar environment composed of two oxygen atoms, one nitrogen atom of tridentate acyhydrazone Schiff base ligand and one nitrogen atom of the pyridine ligand. CCDC: 193111.

Keywords: schiff base acyhydrazone copper (II) complex crystal structure