Vol. 19, No. 4 Apr., 2003



# $Zn(AA)SO_4 \cdot H_2O(AA = Thr, Phe, Val, Met)$ 在水和丙酮混合溶剂中的结晶动力学研究

陈三平 艳 高胜利\* 胡荣祖 史启祯 (陕西省物理无机化学重点实验室/西北大学化学系,西安 710069)

关键词:

氨基酸锌配合物

混合溶剂

结晶动力学

微量热法

分类号:

06140.24

# The Crystallization Kinetics of $Zn(AA)SO_4 \cdot H_2O(AA = Thr, Phe, Val, Met)$ in Mixed Solvent of Water with Acetone

FANG Yan GAO Sheng-Li\* CHEN San-Ping HU Rong-Zu SHI Qi-Zhen (Shaanxi Key Laboratory of Physico-Inorganic Chemistry / Chemistry Department of Northwest University, Xi' an 710069)

The optimum volume ratio of Zn(AA) SO<sub>4</sub> · H<sub>2</sub>O crystallizing from mixed solvent of water with acetone has been determined, which are 1:3, 1:9, 1:10, and 1:30 of water: acetone, respectively. The crystal growth processes of the compounds at 298. 15K are investigated by microcalorimetry. The experimental results show that the processes are in accord with the Burton-Cabrera-Frank dislocation theory.

Keywords:

amino-acid zinc complexes

mixed solvent

crystallization kinetics

microcalorimetry

Zinc is a necessary life element in human body. L- $\alpha$ -amino acid is the basic unit of protein related with life. L- $\alpha$ -Thr(Threonine), L- $\alpha$ -Phe(Phenylalanine), L- $\alpha$ -Val(Valine) and L- $\alpha$ -Met(Methionine) are indispensable to life which have to be absorbed from food because they can not be synthesized in human body. The complexes of zinc salts with  $\alpha$ -amino acid as additive have a wide application in medicine, foodstuff and cosmetics[1-3]. The synthesis methods of the complexes of zinc salts with a-amino acid have been reviewed<sup>[4, 5]</sup>. The solubilities of ZnSO<sub>4</sub>-Thr/Phe/Val/ Met-H<sub>2</sub>O system at 298. 15K have been investigated by

semimicro-phase equilibrium  $method^{[6 \sim 9]}$ . The phase diagrams are simple systems, in which the phase regions of Zn(AA) SO<sub>4</sub> · H<sub>2</sub>O do not exist. The solid complexes of Zn(AA)SO<sub>4</sub> · H<sub>2</sub>O have been prepared by adding acetone into the reaction solution of ZnSO4 and AA (Thr, Phe, Val, Met) in literatures [6-9]. Obviously, the investigation on crystal growth processes of the complexes will provide important parameters for an understanding of the reaction mechanism and technology of synthesis.

In this paper, the kinetic equation of the crystal growth process is derived, and the optimum volume

收稿日期:2002-09-12。收修改稿日期:2002-12-18。

国家自然科学基金资助项目(No. 29871023, 20171036)。

<sup>\*</sup>通讯联系人。E-mail: gaoshli@ nwu. edu. cn

第一作者:房 艳,女,24岁,硕士研究生;研究方向:配位化学和热化学。

维普资讯 http://www.cqvip.com

ratios of mixed solvent of water with acetone for  $Zn(AA)SO_4 \cdot H_2O(AA = Thr, Phe, Val, Met)$  to crystallize from are determined. The total heat produced and the rate of heat production during the crystal growth process are measured using a RD496-  $\blacksquare$  type microcalorimeter. The kinetic parameters are calculated.

# 1 Derivation of the Kinetic Equation of the Crystal Growth Process

In order to analyze the kinetics of the crystal growth process of the complexes of  $Zn^{2+}$  with amino acid, the following general form of the crystal growth process is used

$$A(aq) \rightarrow A(s) + heat$$
 $t = 0,$   $C_0$   $0$   $0$ 
 $t = t,$   $C$   $m$   $Q$ 
 $t = \infty$ ,  $C_{\infty}$   $m_{\infty}$   $Q_{\infty}$ 

where C is the solute concentration in the solution at time t; m is the mass of solid deposited during a certain time t; Q is the heat produced during a certain time. When t=0,  $C=C_{\circ}$ , m=0 and Q=0; when  $t=\infty$ ,  $C=C_{\infty}$ ,  $m=m_{\infty}$ , and  $Q=Q_{\infty}$ .

The relationship between the energy change (i. e. the heat produced) of a reaction system and the extent (i. e. mass or concentration) of the reaction is given by

$$\frac{Q}{Q_m} = \frac{m}{m_m} = \frac{C_0 - C}{C_0 - C_m} \tag{1}$$

and

$$\frac{C_{\infty} - C}{C_{\infty} - C_0} = \frac{m_{\infty} - m}{m_{\infty}} = \frac{Q_{\infty} - Q}{Q_{\infty}}$$
 (2)

From eqn. (1), we have

$$\frac{m_{\infty}}{O_{\infty}} \cdot Q = m$$

and

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \left(\frac{m_{\infty}}{Q_{\infty}}\right) \frac{\mathrm{d}Q}{\mathrm{d}t} \tag{3}$$

From eqn. (2), we obtain

$$C - C_{\infty} = \left( C_0 - C_{\infty} \right) \left( 1 - \frac{Q}{Q_{\infty}} \right) \tag{4}$$

According to the Burton-Cabrera-Frank (BCF) dislocation theory<sup>[10]</sup>, for relatively high supersaturation, the rate of crystal growth at t time (dm/dt) may be expressed as

$$\frac{\mathrm{d}m}{\mathrm{d}t} = k_1 \, m_{\infty} \left( \, C - \, C_{\infty} \, \right) \tag{5}$$

where  $k_1$  is the rate constant of crystal growth.

The combination of eqns. (3), (4) and (5) gives

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = k_1 Q_{\infty} \left( C_0 - C_{\infty} \right) \left( 1 - \frac{Q}{Q_{\infty}} \right)$$

$$= k_2 \left( 1 - \frac{Q}{Q_{\infty}} \right) \tag{6}$$

where  $k_2 = k_1 Q_{\infty} (C_0 - C_{\infty})$ 

When  $\left(\frac{\mathrm{d}Q}{\mathrm{d}t}\right)_i$  is plotted versus  $\left(1-\frac{Q}{Q_\infty}\right)_i$  by the least-squares method, giving the value of  $k_2$  (slope) and a (intercept) in the equation (7)

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = k_1 Q_{\infty} \left( C_0 - C_{\infty} \right) \left( 1 - \frac{Q}{Q_{\infty}} \right) + a$$

$$= k_2 \left( 1 - \frac{Q}{Q_{\infty}} \right) + a \tag{7}$$

where

$$k_1 = \frac{k_2}{Q_{\infty} \left( C_0 - C_{\infty} \right)}$$

As  $C_o \gg C_\infty$ 

$$k_1 = \frac{k_2}{Q_{\infty}C_0} \tag{8}$$

Equ. (8) relates  $k_1$  to  $k_2$ .

The combination of eqns. (3), (4) and (7) gives

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \left(\frac{m_{\infty}}{Q_{\infty}}\right) \frac{\mathrm{d}Q}{\mathrm{d}t}$$

$$= \frac{m_{\infty}}{Q_{\infty}} \left[ k_1 Q_{\infty} \left( C_0 - C_{\infty} \right) \left( 1 - \frac{Q}{Q_{\infty}} \right) + a \right]$$

$$= \frac{m_{\infty}}{Q_{\infty}} \left[ k_1 Q_{\infty} \left( C - C_{\infty} \right) + a \right]$$

$$= k_1 m_{\infty} \left( C - C_{\infty} \right) + \frac{a m_{\infty}}{Q_{\infty}} \tag{9}$$

Similarly, eqn. (9) may be written as

$$\frac{\mathrm{d}m}{\mathrm{d}t} = k_1 m_\infty \left( C - C_\infty \right) + b \tag{10}$$

where b is the intercept of eqn. (10).

Comparing eqns. (9) and (10), eqn. (11) is obtained

$$b = \frac{am_{\infty}}{Q_{\infty}} \tag{11}$$

If the values of the constants a and b are so small as comparison with those of  $k_2$  (or  $k_3$ ) and  $k_1$ , the kinetics of the crystal growth process can be expressed by eqns. (5) and (6).

Equations (5) and (6) are known as the thermokinetic equations of the crystal growth process.

## 2 Experimental

#### 2. 1 Materials

ZnSO<sub>4</sub> • 7H<sub>2</sub>O, A. R. (made in Xi'an Chemical Company); L- $\alpha$ -Thr, L- $\alpha$ -Phe, L- $\alpha$ -Val, L- $\alpha$ -Met, B. R. (Shanghai Kangda Company), purity > 99.9%; acetone, A. R. (made in Xi'an Chemical Company), its density is 0.79g • cm<sup>-3</sup> at 298.15K; the conductivity of the deionized water is 5.48 × 10<sup>-8</sup>S • cm<sup>-1</sup>, its density is 0.99705g • cm<sup>-3</sup> at 298.15K; the others are A. R. grade.

#### 2. 2 Analysis Method

 $Zn^{2+}$  is determined with EDTA by complexometric titration. Phe is analyzed by the formalin method, before that the  $Zn^{2+}$  is removed by precipitating with  $K_2C_2O_4$ .  $SO_4^{2-}$  is determined by the BaSO<sub>4</sub> precipitimetric method.

### 2.3 Experimental Method

The calorimetric experiment is performed using a RD496- III type microcalorimeter<sup>[11]</sup> at (298. 15 ± 0.005) K. The calorimetric constant is determined by Joule effect before experiment, which is (63.994 ± 0.042)  $\mu V \cdot mW^{-1}$  at 298.15K. The enthalpies of solution in deionized water of KCl (spectral purity) is measured to be  $(17.238 \pm 0.048)$  kJ·mol<sup>-1</sup>, which is very close to  $(17.241 \pm 0.018) \text{ kJ} \cdot \text{mol}^{-1[12]}$ . The accuracy is 0.02 % and the precision is 0.3%, which indicates that the calorimetric system is accurate and reliable. The reaction solution/solvent and the diluent are put into the stainless steel sample cell with a container of 15cm<sup>3</sup> (Fig. 1), separately. After equilibrium, the containers of sample and reference are pushed down simultaneously. As a result, the two liquids are mixed and the thermogram is recorded.

#### 3 Result and Discussion

# 3. 1 Choice of the Volume Ratio of Water to Acetone in Mixed Solvent

 $Zn(AA)^{2+}(aq)$  are produced from the reaction of  $ZnSO_4$  with AA in water (the values of  $\lg K$  are



Fig. 1 Sketch used for the study of the formation reaction
1: calorimetric cell; 2: solution of ZnSO<sub>4</sub> with AA;
3: acetone; 4: silicone rubber cover; 5: glass rod.

4. 43<sup>[13]</sup>, 4. 47<sup>[14]</sup>, 4. 44<sup>[15]</sup> and 4. 40<sup>[15]</sup>, respectively) but the solubility is too large to obtain the solid complex. If adding acetone into the system to change the solvent and decrease the solubility of complex, the solution becomes a relatively high-supersaturated system. That is, for the phase diagram, the phase region of acid is reduced, which separates from the phase region of salt, and the phase region of complex is formed. Based on the considerations, with the volume ratio of water: acetone of 1:3, 1:9, 1:10, 1:30, respectively, the white solid compound with the most yields are obtained. After suction filtration, followed by rinsing with a few of acetone and drying to constant weight. The yields of the compounds are 86%, 90%, 73% and 95%, respectively. The results of components analyses indicate that the product is identified as Zn(AA)SO4.  $H_2O$  in comparison with literatures  $^{16-91}$  . The experimental results of variable volume ratios of water to acetone are shown in Table 1.

### 3. 2 Dilution/Crystallization Kinetics

 $\xrightarrow{\text{acetone}} \text{Zn}(AA)SO_4 \cdot H_2O$ 

Adding acetone into the reaction solution system of ZnSO<sub>4</sub>-AA, the crystallization processes begin.

$$ZnSO_4 \cdot 7H_2O(s) + AA(aq)$$

$$\rightarrow Zn(AA)^{2+}(aq) + SO_4^{2-}(aq) + 7H_2O(l)$$

$$Zn(AA)^{2+}(aq) + SO_4^{2-}(aq) + H_2O(l)$$
(12)

(13)

The typical schematic thermograms during the dilution and crystallization are depicted in Fig. 2. The original data obtained from the thermokinetical curve are shown in Table 2. Using the above data, the kinetic data during the dilution/crystallization process

Table 1 Experimental Results of Water and Acetone with the Different Volume Ratios

| AA  | experimental results      |                          |                |                             |                                     |                                                               |                                            |                                        |  |  |
|-----|---------------------------|--------------------------|----------------|-----------------------------|-------------------------------------|---------------------------------------------------------------|--------------------------------------------|----------------------------------------|--|--|
| Thr | volume ratio<br>phenomena | 1:1 1:2<br>turbid turbid |                | 1: 3<br>gelationus          | 1: 4<br>gelationus precipitate      | 1: 10 1: 20 1: 30  amount of precipitate decreasing gradually |                                            |                                        |  |  |
|     | yield/%                   | _                        |                | precipitate<br>86           | 86                                  | 80                                                            | 68                                         | 54                                     |  |  |
| Phe | volume ratio<br>phenomena | 1: 1<br>turbid           | 1: 3<br>turbid | 1:5<br>turbid<br>increasing | 1: 7<br>precipitate formed          | 1: 9<br>mass precipitate                                      | 1: 11<br>mass precipitate                  | 1: 13 precipitate decreasing gradually |  |  |
|     | yield/%                   | _                        |                | _                           | 82                                  | 90                                                            | 88                                         | 86                                     |  |  |
| Val | volume ratio              | 1: 2                     | 1: 4           | 1: 6                        | 1: 8                                | 1: 10                                                         | 1: 12                                      | 1: 14                                  |  |  |
|     | phenomena                 | turbid                   | turbid         | precipitate<br>formed       | amount of precipitate<br>increasing | mass precipitate                                              | amount of precipitate decreasing gradually |                                        |  |  |
|     | yield/%                   | _                        |                | _                           | 61                                  | 73                                                            | 68                                         | 51                                     |  |  |
| Met | volume ratio              | 1: 5                     | 1: 10          | 1: 15                       | 1: 20                               | 1: 25                                                         | 1: 30                                      | 1: 35                                  |  |  |
|     | phenomena                 | turbid                   | turbid         | turbid<br>increasing        | precipitate formed                  | amount of precipitate<br>increasing                           | mass precipitate                           | amount of precipitate<br>decreasing    |  |  |
|     | yield/%                   | _                        |                | 8                           | 62                                  | 90                                                            | 95                                         | 91                                     |  |  |





Fig. 2 Typical thermokinetical graph of the dilution/crystallization process
a. Thr; b. Phe, Val and Met

can be obtained from equations (7), (8) and (11) (Table 3).

The experimental results in Table 3 are obtained based on the principle presented according to a block diagram in Fig. 3. In Fig. 3,  $(dQ/dt)_{1i}$  is the rate of total heat production at time t, including  $(dQ/dt)_{2i}$ , the rate of the heat production of mixing between solvent and diluent at time t, and  $(dQ/dt)_{3i}$ , the rate of



Fig. 3 Block diagram of the process of studying dilution/crystallization kinetics

the heat of crystallization of the crystal at time t; and  $Q_{1i}$  is the total heat produced during a certain time, including  $Q_{2i}$ , the heat of mixing produced between solvent and diluent during a certain time, and  $Q_{3i}$ , the heat of crystallization of the crystal during a certain time. The total heat produced during crystal growth process and the rate constant at 298. 15K are shown in Table 3.

Because the values of the constants a and b are enough small in comparison with those of  $k_2$  and  $k_1$ , the kinetics of the crystal growth process of  $Zn(AA)SO_4$ . H<sub>2</sub>O can be expressed by eqns. (5) and (6). This fact indicates that the crystal growth processes of  $Zn(AA)SO_4$ . H<sub>2</sub>O are in accord with the BCF dislocation theory model.

• 409 •

Table 2 Thermokinetical Data of the Titled Reaction

| Q1./mJ<br>6358. 26<br>6430. 56<br>6501. 40<br>6570. 90<br>6638. 97<br>6705. 69<br>6771. 11 | $\frac{(d Q/dt)_1 \cdot 10^3 / (J \cdot s^{-1})}{1.3541}$ | Q2./mJ                                                                   | $(dQ/dt)_2 \cdot 10^3/(J \cdot s^{-1})$                                                                                                                                     | $Q_3$ ,/m $\mathbf{J}$ (d $Q$ /                                                                                                                 | $(\mathrm{d}t)_3$ , $\cdot 10^4/(\mathrm{J}\cdot\mathrm{s}^{-1})$                                                                                                                                                                                                                               | Q3,/Q3=                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6430. 56<br>6501. 40<br>6570. 90<br>6638. 97<br>6705. 69                                   |                                                           | 2526 15                                                                  |                                                                                                                                                                             |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |
| 6501. 40<br>6570. 90<br>6638. 97<br>6705. 69                                               | 1 2407                                                    | 3536. 17                                                                 | 1. 2209                                                                                                                                                                     | 2822.09                                                                                                                                         | 1. 332                                                                                                                                                                                                                                                                                          | 0. 8534                                                                                                                                                                                                                                                                                                                                                     |
| 6570. 90<br>6638. 97<br>6705. 69                                                           | 1. 3497                                                   | 3598. 03                                                                 | 1. 2192                                                                                                                                                                     | 2832. 53                                                                                                                                        | 1. 305                                                                                                                                                                                                                                                                                          | 0. 8565                                                                                                                                                                                                                                                                                                                                                     |
| 6638. 97<br>6705. 69                                                                       | 1. 3447                                                   | 3659. 80                                                                 | 1. 2165                                                                                                                                                                     | 2841.60                                                                                                                                         | 1. 282                                                                                                                                                                                                                                                                                          | 0. 8593                                                                                                                                                                                                                                                                                                                                                     |
| 6705. 69                                                                                   | 1. 3390                                                   | 3721. 39                                                                 | 1. 2128                                                                                                                                                                     | 2849. 51                                                                                                                                        | 1. 262                                                                                                                                                                                                                                                                                          | 0. 8617                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                            | 1. 3337                                                   | 3782. 79                                                                 | 1. 2092                                                                                                                                                                     | 2856. 18                                                                                                                                        | 1. 245                                                                                                                                                                                                                                                                                          | 0. 8637                                                                                                                                                                                                                                                                                                                                                     |
| 6771. 11                                                                                   | 1. 3296                                                   | 3844. 04                                                                 | 1. 2065                                                                                                                                                                     | 2861.65                                                                                                                                         | 1. 231                                                                                                                                                                                                                                                                                          | 0. 8653                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                            | 1. 3254                                                   | 3905. 15                                                                 | 1. 2034                                                                                                                                                                     | 2865. 96                                                                                                                                        | 1. 220                                                                                                                                                                                                                                                                                          | 0. 8666                                                                                                                                                                                                                                                                                                                                                     |
| 6835. 19                                                                                   | 1. 3209                                                   | 3966. 09                                                                 | 1. 1996                                                                                                                                                                     | 2869. 10                                                                                                                                        | 1. 212                                                                                                                                                                                                                                                                                          | 0. 8676                                                                                                                                                                                                                                                                                                                                                     |
| - 13814.                                                                                   | $14 \text{mJ}$ , $Q_{2*} = -10507.16 \text{mJ}$ ,         | $Q_{3=}=-3$                                                              | 306. 98mJ                                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |
| 3795. 91                                                                                   | 4. 84                                                     | 5386. 55                                                                 | 5. 05                                                                                                                                                                       | - 1590. 64                                                                                                                                      | - 4. 94                                                                                                                                                                                                                                                                                         | 0. 942                                                                                                                                                                                                                                                                                                                                                      |
| 3823. 86                                                                                   | 4. 69                                                     | 5427. 43                                                                 | 4. 94                                                                                                                                                                       | - 1603. 57                                                                                                                                      | <b>- 4. 55</b>                                                                                                                                                                                                                                                                                  | 0. 950                                                                                                                                                                                                                                                                                                                                                      |
| 3852. 81                                                                                   | 4. 55                                                     | 5467. 24                                                                 | 4. 84                                                                                                                                                                       | - 1614. 43                                                                                                                                      | - 4. 22                                                                                                                                                                                                                                                                                         | 0. 956                                                                                                                                                                                                                                                                                                                                                      |
| 3882. 81                                                                                   | 4. 41                                                     | 5506. 03                                                                 | 4. 74                                                                                                                                                                       | - 1623. 22                                                                                                                                      | - 3. 95                                                                                                                                                                                                                                                                                         | 0. 962                                                                                                                                                                                                                                                                                                                                                      |
| 3908. 71                                                                                   | 4. 28                                                     | 5543.83                                                                  | 4. 64                                                                                                                                                                       | - 1635. 12                                                                                                                                      | - 3. 59                                                                                                                                                                                                                                                                                         | 0. 969                                                                                                                                                                                                                                                                                                                                                      |
| 3935. 22                                                                                   | 4. 15                                                     | 5580. 68                                                                 | 4. 55                                                                                                                                                                       | - 1645. 46                                                                                                                                      | - 3. 28                                                                                                                                                                                                                                                                                         | 0. 975                                                                                                                                                                                                                                                                                                                                                      |
| 3958. 76                                                                                   | 4. 04                                                     | 5616. 63                                                                 | 4. 46                                                                                                                                                                       | - 1657. 87                                                                                                                                      | - 2. 91                                                                                                                                                                                                                                                                                         | 0. 982                                                                                                                                                                                                                                                                                                                                                      |
| 3980. 38                                                                                   | 3. 92                                                     | 5651.70                                                                  | 4. 38                                                                                                                                                                       | - 1671. 32                                                                                                                                      | - 2.50                                                                                                                                                                                                                                                                                          | 0. 990                                                                                                                                                                                                                                                                                                                                                      |
| 4002. 75                                                                                   | 3. 80                                                     | 5685. 96                                                                 | 4. 30                                                                                                                                                                       | - 1683, 21                                                                                                                                      | <b>- 2. 14</b>                                                                                                                                                                                                                                                                                  | 0. 997                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                            | $2 \text{mJ}, Q_{2*} = 18582.69 \text{mJ}, Q_{3*}$        | = - 1687.                                                                | 87mJ                                                                                                                                                                        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |
| 1624. 91                                                                                   | 16. 56                                                    | 3810. 29                                                                 |                                                                                                                                                                             | 2185. 38                                                                                                                                        | 5. 90                                                                                                                                                                                                                                                                                           | 0. 4025                                                                                                                                                                                                                                                                                                                                                     |
| 1792. 22                                                                                   |                                                           | 4045. 13                                                                 | 22. 36                                                                                                                                                                      | 2252. 91                                                                                                                                        | 5. 78                                                                                                                                                                                                                                                                                           | 0. 4149                                                                                                                                                                                                                                                                                                                                                     |
| 1959. 57                                                                                   | 16. 57                                                    | 4279. 84                                                                 |                                                                                                                                                                             | 2320. 27                                                                                                                                        | 5. 66                                                                                                                                                                                                                                                                                           | 0. 4273                                                                                                                                                                                                                                                                                                                                                     |
| 2126. 43                                                                                   |                                                           | 4505. 43                                                                 |                                                                                                                                                                             | 2379. 01                                                                                                                                        | 5. 55                                                                                                                                                                                                                                                                                           | 0. 4381                                                                                                                                                                                                                                                                                                                                                     |
| 2292. 37                                                                                   |                                                           | 4721. 98                                                                 |                                                                                                                                                                             | 2429. 62                                                                                                                                        | 5. 46                                                                                                                                                                                                                                                                                           | 0. 4474                                                                                                                                                                                                                                                                                                                                                     |
| 2456. 97                                                                                   |                                                           | 4929. 55                                                                 |                                                                                                                                                                             | 2472. 58                                                                                                                                        | 5. 38                                                                                                                                                                                                                                                                                           | 0. 4554                                                                                                                                                                                                                                                                                                                                                     |
| 2619. 86                                                                                   |                                                           | 5128. 57                                                                 |                                                                                                                                                                             | 2508.71                                                                                                                                         | 5. 32                                                                                                                                                                                                                                                                                           | 0. 4620                                                                                                                                                                                                                                                                                                                                                     |
| 2780. 68                                                                                   |                                                           | 5319. 29                                                                 |                                                                                                                                                                             | 2538. 61                                                                                                                                        | 5. 27                                                                                                                                                                                                                                                                                           | 0. 4675                                                                                                                                                                                                                                                                                                                                                     |
| 2939. 17                                                                                   |                                                           | 5501.99                                                                  |                                                                                                                                                                             | 2562. 82                                                                                                                                        | 5. 22                                                                                                                                                                                                                                                                                           | 0. 4720                                                                                                                                                                                                                                                                                                                                                     |
| 3095. 11                                                                                   |                                                           | 5676. 98                                                                 |                                                                                                                                                                             | 2581.87                                                                                                                                         | 5. 19                                                                                                                                                                                                                                                                                           | 0. 4755                                                                                                                                                                                                                                                                                                                                                     |
| 3248. 26                                                                                   |                                                           | 5844. 56                                                                 |                                                                                                                                                                             | 2596. 30                                                                                                                                        | 5. 16                                                                                                                                                                                                                                                                                           | 0. 4781                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                            | $Q_{2m} = 20924.576 \text{ mJ},  ($                       |                                                                          |                                                                                                                                                                             |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |
| 4925. 14                                                                                   |                                                           | 4934. 31                                                                 |                                                                                                                                                                             | - 9. 18                                                                                                                                         | - 7. 286                                                                                                                                                                                                                                                                                        | 0. 002                                                                                                                                                                                                                                                                                                                                                      |
| 5540. 08                                                                                   |                                                           | 5595. 13                                                                 |                                                                                                                                                                             | - 55. 06                                                                                                                                        | - 7. 246                                                                                                                                                                                                                                                                                        | 0. 012                                                                                                                                                                                                                                                                                                                                                      |
| 6128. 68                                                                                   |                                                           | 6213. 89                                                                 |                                                                                                                                                                             | - 85, 21                                                                                                                                        | - 7. 200                                                                                                                                                                                                                                                                                        | 0. 019                                                                                                                                                                                                                                                                                                                                                      |
| 6645. 14                                                                                   |                                                           | 6789. 34                                                                 |                                                                                                                                                                             | - 144. 20                                                                                                                                       | - 7. 110                                                                                                                                                                                                                                                                                        | 0. 032                                                                                                                                                                                                                                                                                                                                                      |
| 7204. 62                                                                                   |                                                           | 7322. 60                                                                 |                                                                                                                                                                             | - 117. 98                                                                                                                                       | - 7. 150                                                                                                                                                                                                                                                                                        | 0. 026                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                            |                                                           | 7818. 04                                                                 |                                                                                                                                                                             | - 161. 24                                                                                                                                       | - 7. 084                                                                                                                                                                                                                                                                                        | 0. 036                                                                                                                                                                                                                                                                                                                                                      |
| 7653. 79                                                                                   |                                                           | 8268. 23                                                                 |                                                                                                                                                                             | - 176. 32                                                                                                                                       | - 7. 061                                                                                                                                                                                                                                                                                        | 0. 039                                                                                                                                                                                                                                                                                                                                                      |
| 8091.91                                                                                    |                                                           |                                                                          |                                                                                                                                                                             | - 213. 02                                                                                                                                       | - 7. 005                                                                                                                                                                                                                                                                                        | 0.047                                                                                                                                                                                                                                                                                                                                                       |
| 8471.84                                                                                    |                                                           |                                                                          |                                                                                                                                                                             |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                 | 0. 050                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                            |                                                           |                                                                          |                                                                                                                                                                             |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                 | 0. 097                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                            |                                                           |                                                                          |                                                                                                                                                                             |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                 | 0. 097                                                                                                                                                                                                                                                                                                                                                      |
| 8/60 Ol                                                                                    |                                                           |                                                                          |                                                                                                                                                                             |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                            |                                                           |                                                                          |                                                                                                                                                                             | - /31. 10                                                                                                                                       | - 0. 184                                                                                                                                                                                                                                                                                        | 0. 166                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                            | 8839. 75<br>8840. 52<br>8760. 01<br>8987. 17              | 8839. 75 0. 778<br>8840. 52 0. 736<br>8760. 01 0. 721<br>8987. 17 0. 623 | 8839. 75       0. 778       9067. 20         8840. 52       0. 736       9280. 99         8760. 01       0. 721       9417. 43         8987. 17       0. 623       9738. 32 | 8839. 75     0. 778     9067. 20     1. 476       8840. 52     0. 736     9280. 99     1. 402       8760. 01     0. 721     9417. 43     1. 354 | 8839. 75       0. 778       9067. 20       1. 476       - 227. 44         8840. 52       0. 736       9280. 99       1. 402       - 440. 47         8760. 01       0. 721       9417. 43       1. 354       - 657. 43         8987. 17       0. 623       9738. 32       1. 241       - 751. 16 | 8839. 75       0. 778       9067. 20       1. 476       - 227. 44       - 6. 983         8840. 52       0. 736       9280. 99       1. 402       - 440. 47       - 6. 658         8760. 01       0. 721       9417. 43       1. 354       - 657. 43       - 6. 327         8987. 17       0. 623       9738. 32       1. 241       - 751. 16       - 6. 184 |

Table 3 Experimental Results of the Dilution/Crystallization Kinetics

| AA  | solute/g                                  | solvent/g        | diluent/g                       | - Q-                                   | $\frac{\mathrm{d}Q}{\mathrm{d}t} = k_2 \left( 1 - \frac{Q}{Q_n} \right) + a$ |                                 |        | $\frac{\mathrm{d}m}{\mathrm{d}t} = k_1 m_{\pi} \left( C - C_{\pi} \right) + b$ |                                         |
|-----|-------------------------------------------|------------------|---------------------------------|----------------------------------------|------------------------------------------------------------------------------|---------------------------------|--------|--------------------------------------------------------------------------------|-----------------------------------------|
|     |                                           |                  |                                 | /( <b>J</b> ⋅ <b>g</b> <sup>-1</sup> ) | $k_2 \cdot 10^3 / (\text{J} \cdot \text{s}^{-1})$                            | $a \cdot 10^4/(J \cdot s^{-1})$ | r      | $k_1 \cdot 10^3 / \mathrm{s}^{-1}$                                             | b·10 <sup>7</sup> /(J·s <sup>-1</sup> ) |
| Thr | Zn(Thr)SO <sub>4</sub> · H <sub>2</sub> O | H₂O              | C <sub>2</sub> H <sub>6</sub> O | 258                                    | 8. 4                                                                         | 1                               | 0. 99  | 2. 87                                                                          | 3. 88                                   |
|     | (0.0149)                                  | (0. 4990)        | (1.1850)                        | 255                                    | 8. 36                                                                        | 2                               | 0. 99  | 2. 86                                                                          | 7. 84                                   |
|     |                                           |                  |                                 | 264                                    | 8. 45                                                                        | 3. 5                            | 0. 98  | 2. 89                                                                          | 1, 33                                   |
|     |                                           |                  |                                 | 260                                    | 8. 41                                                                        | 2. 7                            | 0. 97  | 2. 87                                                                          | 1.04                                    |
|     |                                           |                  |                                 | 250                                    | 8. 39                                                                        | 4. 1                            | 0. 99  | 2. 87                                                                          | 1.64                                    |
|     |                                           |                  |                                 | 251                                    | 8. 47                                                                        | 1. 5                            | 0.98   | 2.89                                                                           | 5. 98                                   |
|     |                                           |                  | mean                            | 256                                    | 8.41                                                                         | 2. 47                           |        | 2. 88                                                                          | 3. 62                                   |
| Phe | Zn(Phe)SO <sub>4</sub> · H <sub>2</sub> O | H <sub>2</sub> O | C <sub>2</sub> H <sub>6</sub> O | 272                                    | 5. 1                                                                         | 2                               | 0. 998 | 7. 09                                                                          | 7. 35                                   |
|     | (0.0069)                                  | (0. 1994)        | (1.4200)                        | 268                                    | 5                                                                            | 2. 5                            | 0. 997 | 7. 05                                                                          | 9. 33                                   |
|     |                                           |                  |                                 | 269                                    | 5. 3                                                                         | 1.8                             | 0. 999 | 7. 45                                                                          | 6. 69                                   |
|     |                                           |                  |                                 | 270                                    | 5. 6                                                                         | 2, 8                            | 0. 998 | 7. 84                                                                          | 10. 37                                  |
|     |                                           |                  |                                 | 275                                    | 5. 5                                                                         | 1. 9                            | 0. 995 | 7. 56                                                                          | 6. 91                                   |
|     |                                           |                  |                                 | 272                                    | 4. 9                                                                         | 2. 4                            | 0. 997 | 6. 81                                                                          | 8. 82                                   |
|     |                                           |                  | mean                            | 271                                    | 5. 23                                                                        | 2. 23                           |        | 7. 3                                                                           | 8. 25                                   |
| Val | Zn(Val)SO <sub>4</sub> · H <sub>2</sub> O | H <sub>2</sub> O | C <sub>2</sub> H <sub>6</sub> O | 1261                                   | 9. 7                                                                         | 1                               | 0. 99  | 5, 39                                                                          | 0, 93                                   |
|     | (0.0059)                                  | (0. 1994)        | (1.5800)                        | 1264                                   | 9. 75                                                                        | 1, 5                            | 0.99   | 5. 4                                                                           | 1. 19                                   |
|     |                                           |                  |                                 | 1259                                   | 9. 72                                                                        | 2                               | 0. 99  | 5. 41                                                                          | 1, 59                                   |
|     |                                           |                  |                                 | 1266                                   | 9. 69                                                                        | 4                               | 0. 97  | 5. 36                                                                          | 3. 16                                   |
|     |                                           |                  |                                 | 1258                                   | 9. 68                                                                        | 3.7                             | 0.98   | 5. 39                                                                          | 2, 94                                   |
|     |                                           |                  |                                 | 1260                                   | 9. 74                                                                        | 2. 6                            | 0.99   | 5. 41                                                                          | 2. 06                                   |
|     |                                           |                  | mean                            | 1261                                   | 9. 71                                                                        | 2. 47                           |        | 5. 39                                                                          | 1. 98                                   |
| Met | Zn(Met)SO <sub>4</sub> · H <sub>2</sub> O | H <sub>2</sub> O | C <sub>3</sub> H <sub>6</sub> O | 1443                                   | 6. 8                                                                         | 5                               | 0. 999 | 11. 25                                                                         | 3, 47                                   |
|     | (0.0033)                                  | (0.0997)         | (2.3700)                        | 1440                                   | 6. 79                                                                        | 4. 5                            | 0. 997 | 11. 26                                                                         | 3, 13                                   |
|     |                                           |                  |                                 | 1450                                   | 6. 77                                                                        | 5. 2                            | 0. 997 | 11, 15                                                                         | 3, 59                                   |
|     |                                           |                  |                                 | 1447                                   | 6. 82                                                                        | 5.3                             | 0. 998 | 11. 25                                                                         | 3. 66                                   |
|     |                                           |                  |                                 | 1444                                   | 6. 8                                                                         | 4. 7                            | 0. 995 | 11. 24                                                                         | 4. 71                                   |
|     |                                           |                  |                                 | 1449                                   | 6. 75                                                                        | 4. 4                            | 0. 999 | 11. 12                                                                         | 3. 04                                   |
|     |                                           |                  | mean                            | 1446                                   | 6, 79                                                                        | 4. 85                           |        | 11. 21                                                                         | 3, 6                                    |

 $Q_-$ , total heat produced/( $J \cdot g^{-1}$ ); d Q/dt, rate of heat production at time  $t/(J \cdot s^{-1})$ ;  $k_2$ , rate constant of crystal growth/( $J \cdot s^{-1}$ ); Q, heat production at a certain time/J; Q, constant of BCF/( $J \cdot s^{-1}$ ); d M/dt, rate of crystal growth at time  $t/(g \cdot s^{-1})$ ;  $k_1$ , rate constant of crystal growth/ $s^{-1}$ ; , total mass of solid deposited/g; C, solute concentration in the solution (g/100g solvent); equilibrium saturation concentration (g/100g solvent); b, constant of BCF/( $g \cdot s^{-1}$ ).

#### References

- [1] Mohmoud M., Abdel-monem S., Paul M. US Patent, 4 039 681, 1977-08-02.
- [2] Taguohi S., Inokuchi M., Makajima, N. et al WO Patent, 10 178, 1992-06-25.
- [3] H. A., Ashmed K. U. US Patent, 4 830 716, 1989-05-16.
- [4] Gao S. L., Liu J. R., Ji M. et al Chin. Sci. Bull., 1998, 43, 1527.
- [5] GAO Sheng-Li(高胜利), HOU Yu-Dong(侯育东), LIU Jian-Rui(刘建睿) et al *Huaxue Tongbao*(*Chemistry*), 1999, 11, 30.
- [6] HOU Yu-Dong(侯育东), GAO Sheng-Li(高胜利), GUO Li-Juan(郭利娟) et al Gaodeng Xuexiao Huaxue Xuebao (Chem. J. Chinese Univ.,), 1999, 20, 1346.
- [7] Gao S. L., Hou Y. D., Shi Q. Z., Russian J. Inorg. Chem., 2001, 46, 1908.
- [8] ZHANG Xiao-Yu(张晓玉), YANG Xu-Wu(杨旭武), JI

- Mian(冀 棉) et al Yingyong Huaxue (Chin. J. Appli. Chem.), 2000, 17, 243.
- [9] GAO Sheng-Li(高胜利), ZHANG Xiao-Yu(张晓玉), YANG Xu-Wu(杨旭武) et al *Huaxue Xuebao*(Acta Chimica Sinica), 2001, 59, 73.
- [10] Burton W. K., Cabrera N., Frank E. C. Trans. Roy. Soc. (London), 1951, A243, 299.
- [11] Ji M., Liu M. Y., Gao S. L. et al Instrumentation Sci. & Technology, 2001, 29, 53.
- [12] Marthada V. K. J. Res. NBS of Standards, 1980, 85, 467.
- [13] Linke W. F. Solubilities of Inorg. And Metal-Org. Compounds, Am. Chem. Soc.: Washington, 1965, Vol-II, K-Z.
- [14] LIU Qi-Tiao (刘祁涛), TIAN Ji-Kun (田吉坤), ZHANG Feng(张 锋) et al *Huaxue Xuebao* (Acta Chimica Sinica), 1994, 52, 1100.
- [15] FAN Chun-Mei(樊春梅), MA Shu-Lin(马书林), GUO De-Wei(郭德威) et al Gaodeng Xuexiao Huaxue Xuebao (Chem. J. Chinese Univ.), 1986, 7, 546.