, 一 研究简报 《

[Cu(TOL)₄]Cl₂ · 2C₂H₅OH · 2H₂O 的合成和晶体结构

张培志*,1 吴 军² 龚钰秋² 胡秀荣³ 顾建明³

(¹ 浙江科技学院生物与化学工程学系, 杭州 310012)

(²浙江大学化学系,杭州 310027) 3 浙江大学公标测试中心,杭州 210028

(3浙江大学分析测试中心,杭州 310028)

关键词:	三唑醇	铜(II)配合物	合成	晶体结构	
分类号:	0614.121	0611.4			

三唑醇 (Triadimenol, 简写 TOL) 是一内吸性的 广谱低毒杀菌剂, 主要用于禾谷类作物, 腥黑穗病、 丝黑穗病、散黑穗病、白粉病、锈病等病害的防 治^[1-3]。其化学名称为 1-(4- 氯苯氧基)-3, 3- 二甲基 -1-(1H-1, 2, 4 三唑 -1 基)丁基 -2- 醇, 结构式如下:

以农药为配体的金属配合物近年来逐渐被人重 视^[4,5], 它不仅保持了某些金属离子的杀菌特性, 扩 大了杀菌谱, 而且作为一种缓释技术, 使农药具有提 高持效、延长半衰期、降低对哺乳动物的毒性以及使 农药从非内吸性转化为内吸性等优越性。铜化合物 作为杀菌剂使用已有 60 多年的历史, 至今仍无抗 性, 由于其广谱、低毒, 对人、畜、植物安全等特点, 仍 是现农用杀菌剂的主要品种^[6,7]。研究三唑醇和铜配 合物的制备, 以及相互作用后可能发生的分子结构 的变化规律, 对揭示结构与生物活性之间的关系意 义重大。本文首次报道标题化合物的合成, 用元素 分析、红外光谱、热分析等方法确定该配合物的组成 和结构, 并用单晶 X- 射线衍射仪测定了其晶体结 构。 1 实验部分

1.1 试剂与仪器

主要试剂:配体三唑醇由三唑酮按文献[™]还原 而成,经提纯得到白色固体,熔点:112~114℃(文献 值112~116℃),其它试剂均为分析纯。

主要仪器: Rigaku RAXIS-RAPID 单晶衍射仪, Carlo-Erba EA1110 元素分析仪, Bruker vector 22 红 外光谱仪, TGA7 型热分析仪。

1.2 标题化合物的合成

按物质的量比 1:4 称取一定量的 CuCl₂·2H₂O 和三唑醇, 分别溶于无水乙醇中, 在回流温度下 将 CuCl₂ 溶液逐滴加入三唑醇溶液中。搅拌反应 16h, 无沉淀析出, 冷却, 静置过夜后有蓝色浑浊产 生。过滤, 滤液在室温下自然缓慢挥发, 数天后析 出适合于 X 射线衍射分析用的蓝色单晶。元素分 析: C₆₀H_{ss}N₁₂O₁₂Cl₆Cu(M = 1445.6), 计算值 (%): C 49.85, H 6.13, N 11.63; 实测值 (%): C 50.05, H 5.88, N 12.38。

1.3 晶体结构测定

选取尺寸为 0. 34mm × 0. 30mm × 0. 10mm 的完 整单晶, 置于 Rigaku RAXIS RAPID Image Plate 衍射 仪上, 采用 Mo K α 射线($\lambda = 0.07107$ nm)石墨单色器 进行测定。晶体距 IP 板的距离为 127. 40nm, 扫描范 围: 2. 47° ≤ $\theta \le 25.00^\circ$, $h = -11 \sim 11$, $k = -14 \sim 11$

收稿日期: 2003-04-08。收修改稿日期: 2003-06-02。

浙江省自然科学基金(No. 201004)和浙江省教育厅基金(No. 20010436)资助项目。

^{*}通讯联系人。E-mail: zhangpzpz@ sohu. com

第一作者:张培志,女,40岁,硕士,副教授;研究方向:配位化学和应用化学。

14, $l = -20 \sim 20$, 以 ω 扫描方式, 分二段回摆 (ω : 130. 0° ~ 190. 0°, 0. 0° ~ 160. 0°), 共收集 44 幅图, 获 得独立衍射点 6429 个 ($R_{int} = 0.024$), 其中可观察点 5362 个 ($I > 2\sigma(I)$)。衍射数据经 Lp 校正, 用直接 法进行晶体结构解析^[9], 随后用数轮差值 Fourier 合 成法确定非氢原子和氢原子位置, 对全部非氢原子 坐标进行了各向异性参数全矩阵的最小二乘法修 正, 氢原子采用各向同性参数跨骑修正, 参与修正的 变量为 402 个, 衍射数目与变量参数之比为 15.99, 最终结构偏离因子 $R_1 = 0.0692$, $wR_2 = 0.1845$, s =1.042, $\omega = 1/[s^2(F_o^2) + (0.0989P)^2 + 2.5100P]$, $P = (F_o^2 + 2F_o^2)/3$, (Δ/σ)_{max} = 0.000, 最终的差值 电子密度最大值为 176e · nm⁻³, 最小值为 – 590e · nm⁻³。数据还原、结构解析及其精修的计算均采用 Rigaku Crystal Structure 3.0 软件包完成。

CCDC: 210089.

2 结果与讨论

2.1 标题化合物的谱学表征

IR 分析: 配体在 3245 cm⁻¹ 附近有一 O-H 吸收 峰, 形成配合物后在 3424 cm⁻¹ 处获得加强和加宽, 这是水分子、乙醇及配体的 O-H 峰在此位置重叠所 致;配合物在 3134 cm⁻¹、1586 cm⁻¹、1522 cm⁻¹ 的主要 特征吸收峰分别归属于不饱和的 = C - H、C = N 及 C = C 振动,与配体三唑醇相比,它的不饱和 C = N、 C = C 峰位置分别紫移 2 cm⁻¹、9 cm⁻¹,表明配合物的 形成对三唑环上电子密度的改变起了一定的作用。 热重分析在氮气气氛中进行、以 Al₂O₃ 为参比 物,升温速度为 10℃ · min⁻¹。配合物的热分解明显 分为三步。分解从 60℃ 开始, 到 146℃ 失重为 9.3%,这一温度区间对应于配合物失去 2 分子乙醇 和 2 分子水(理论值为 8.9%);在 146~289℃,配合 物失重为 79.4%,此温度范围对应于失去 4 个三唑 醇配体 (理论值为 81.7%); 510℃以后完全分解成 残渣氧化铜,残余量为 5.6%,与理论值 (5.5%)较 为吻合。

2.2 晶体结构描述

配合物的分子结构见图 1, 配合物的晶体学数 据列于表 1, 部分键长和键角数据列于表 2。

由分析结果可知,配合物的分子式可表达成 [Cu(TOL)₄]Cl₂·2C₂H₅OH·2H₂O,在整个配合物分

图 1 配合物的分子结构

Fig. 1 Molecular structure of the complex

	• • •	-	
empirical formula	$C_{60}H_{88}N_{12}O_{12}Cl_6Cu$	structure solution	direct methods (SHELXS-97)
formula weight	1445.6	wavelength/nm	Mo Kα 0. 07107
crystal dimensions/mm ³	$0.34 \times 0.30 \times 0.10$	crystal system	triclinic
temperature / K	296(±1)	space group	$P\bar{1}(#2)$
reflections collected	14181	a∕nm	0.9861(2)
independent reflections	6429	b∕nm	1.1930(2)
F(000)	755	c∕nm	1.7140(3)
$\mu(Mo K\alpha) / cm^{-1}$	5. 69	$\alpha / (\circ)$	71.53(3)
refinement method	full-matrix least-squares on F^2	eta / (°)	81.94(3)
goodness of fit indicator	1.032	$\gamma / (\circ)$	75.56(3)
max shift/error in final cycle	0.000	V/nm^3	1.848(6)
$R_1(I > 2.00 \sigma(I))$	0.0692	$D_{\rm c}/({ m g}\cdot{ m cm}^{-3})$	1. 295
$wR_2(I > 2.00 \sigma(I))$	0. 1845	Z	1
maximum peak in final diff. map/(e \cdot nm $^{-3})$	176	2 <i>θ</i> ∕(°)	50
minimum peak in final diff. map/(e \cdot nm $^{-3})$	- 590		

	18 1	的日的眼	3147-	7X]/	4	
Table 1	Crystal	Lgraphic	Data	for	the	Complex

和今物具体学物理

Table 2 Selected Bond Lengths(nm) and Angles(°) for the Complex					
Cu1-N1	0.2011(3)	O4-C24	0.1417(5)	N4-C16	0.1323(5)
Cu1-N4	0.2025(3)	N1-C1	0.1318(5)	N4-C15	0.1360(5)
01-C3	0.1389(5)	N1-C2	0.1353(5)	N5-C15	0.1304(5)
01-C4	0.1390(5)	N2-C2	0.1310(5)	N5-N6	0.1359(4)
02-C10	0.1409(6)	N2-N3	0.1346(5)	N6-C16	0.1323(5)
O3-C18	0.1388(5)	N3-C1	0.1326(5)	N6-C17	0.1463(5)
03-C17	0.1407(5)	N3-C3	0.1472(5)		
N1-Cu1-N1 *	180.0	C1-N3-N2	110.7(3)	N1-C1-N3	109.0(4)
N1-Cu1-N4	89.62(13)	C1-N3-C3	127.5(4)	N2-C2-N1	113.8(4)
N1*-Cu1-N4	90.38(13)	N2-N3-C3	121.8(3)	01-C3-N3	108.1(3)
N4-Cu1-N4*	180.0	C16-N4-C15	103.2(3)	O1-C3-C10	109.5(4)
C3-O1-C4	119.7(3)	C16-N4-Cu1	125.3(3)	N3-C3-C10	110.4(3)
C18-O3-C17	119.1(3)	C15-N4-Cu1	130.6(3)	N5-C15-N4	114.2(3)
C1-N1-C2	103.8(3)	C15-N5-N6	102.8(3)	N4-C16-N6	109.7(3)
C1-N1-Cu1	128.2(3)	C16-N6-N5	110.1(3)	O3-C17-N6	109.7(3)
C2-N1-Cu1	127.8(3)	C16-N6-C17	128.8(3)	O3-C17-C24	106.0(3)
C2-N2-N3	102.7(3)	N5-N6-C17	120.9(3)	N6-C17-C24	113.2(3)

子中,中心离子 Cu (II)以 *dsp*² 杂化轨道分别与 4 个 三唑醇分子成键,其中每个三唑醇分子均表现为单 齿配体,与中心铜离子形成一平面正方形的铜配离 子。结构显示,配合物是以Cu (II)与三唑环 [N1C2N2N3C1]中的 4-位氮原子 N1 作用成键的, 不同于 2-位氮原子的配位方式^[10]。形成配位阳离子 后,再与外界氯离子以电价结合形成盐。在结晶时, 带有 2 分子结晶水和 2 分子乙醇。

由分子结构图可知,每一个三唑醇分子中的三 唑环及苯环各自的共面性都很好,且在对称的配合 物结构中,相邻的三唑醇分子中的两个苯环平面及 三唑环平面两两基本上相互垂直(分别为 88.64°和 83.18°),相对的4对三唑五元环及苯的六元环平面 分别平行,以满足4个三唑醇分子庞大结构的配位 需要。

中心铜离子与外界氯离子的间距为 0. 2787nm, 与结晶 水 及 乙 醇 分 子 中 的 氧 原 子 间 距 分 别 为 0. 530nm、0. 626nm,大大超过其范德华力的间距,说 明水分子与乙醇分子仅为弥补配合物晶体结构的空 隙。 Cu (II)与配位氮原子 N1 及 N4 的间距分别为 0. 2011nm 和 0. 2025nm,且 N1*-Cu1-N4 的键角为 90. 38°,由于配体三唑醇空间位阻和三唑环的刚性, 致使与理论正方形结构稍有偏差,配合物为略有畸 变的平面正方形构型(图 2)。表 2 还可以看出,在配 体三唑醇分子中,平均 N-N,C-N 键 (0. 1353nm, 0. 1341nm)比常规的 N-N,C-N 键 (0. 1450nm,

图 2 配位多面体结构 Fig. 2 Polyhedron of the complex

0.1470nm) 要短些,而 C = N 键长 (0.1314nm) 比常 规的 C = N 键长(0.1270nm) 要长些。N-N, C-N 以及 C = N 键长的平均化, 是三唑环共轭效应所致^[11,12]。

参考文献

- Everts K. L., Leath S., Finney P. L. Plant Disease, 2001, 85(4), 423.
- [2] Edwards J., Bienvenu F. E. Crop Protection, 2000, 19(3), 195.
- [3] Hudson H. R., WU Jun, XU Wei-Liang Chem. Res. Chinese U., 2002, 18(4), 481.

- [4] Prasad B. P., Kantam M. L., Choudary B. M., Sukumar K., Satyanarayana K. Pestic. Sci., 1990, 28, 157.
- [5] ZHANG Pei-Zhi(张培志), WU Jun(吴 军), GONG Yu-Qiu(龚钰秋) et al Wuji Xuaxue Xuebao(Chin. J. Inorg. Chem.), 2003, 19(7), 753.
- [6] Newman S. E., Roll M. J., Harkrader R. J. Hortscience, 1999, 34(4), 686.
- [7] Nicoletti G., Domalewska E., Borland R. *Mycological Rese*arch, **1999**, **103**(9), 1073.
- [8] LI Yu-Chang(李煜昶) Nongyao(Pesticides), 1993, 32(1), 20.
- [9] Sheldrick G. M. SHELXS-97 and SHELXL-97 Program for

Crystal Structure Refinement, University of Gottingen, Germany, **1997**.

- [10]ZHANG Jian-Guo(张建国), ZHANG Tong-Lai(张同来), LU Zheng(陆政), YU Kai-Bei(郁开北) Huaxue Xuebao (Acta Chimica Sinica), 1999, 57, 1233.
- [11] DAI An-Bang(戴安邦) et al Coordination Chemistry(配位 化学), Beijing: Science Press, 1987, p61, 122.
- [12]XING Qi-Yi(邢其毅), XU Rui-Qiu(徐瑞秋), ZHOU Zheng(周 政), PEI Wei-Wei(裴伟伟) Basic Organic Chemistry, Beijing: Advanced Education Press, 1994, p166, 434.

Synthesis and Crystal Structure of $[Cu(TOL)_4]Cl_2 \cdot 2C_2H_5OH \cdot 2H_2O$

ZHANG Pei-Zhi*, 1 WU Jun² GONG Yu-Qiu² HU Xiu-Rong³ GU Jian-Ming³

(¹ Zhejiang University of Science and Technology, Department of Biological and Chemical Engineering, Hangzhou 310012)

(² Zhejiang University, Department of Chemistry, Hangzhou 310027)

(³ The Central Laboratory, Zhejiang University, Hangzhou 310028)

The complex of triadimenol(TOL) and copper chloride was synthesized in ethanol, and its crystal structure had been determined using single crystal X-ray diffraction. The crystal belongs to triclinic, space group $P\overline{1}$, a = 0.9861(2) nm, b = 1.1930(2) nm, c = 1.7140(3) nm, $\alpha = 71.53(3)^{\circ}$, $\beta = 81.94(3)^{\circ}$, $\gamma = 75.56(3)^{\circ}$, V = 1.848(6) nm³, Z = 1, $D_c = 1.295$ g · cm⁻³, F(000) = 755, $R_1 = 0.0692$, $wR_2 = 0.1845$. The results show that the coordination geometry around copper (II) in the complex is slightly distorted four-coordinated square-planar geometry. The title complex was also characterized by elementary analysis, IR and TG. CCDC: 210089.

Keywords: triadimenol Cu (II) complex synthesis crystal structure