第9期 2003年9月 Vol. 19, No. 9 Sep., 2003

研究简报

Ag(I)、Pd(II)异核金属簇合物的制备和晶体结构研究

司徒粤 黄少斌* 张居光

(华南理工大学应用化学系,广州 510640)

关键词:	双膦	异核金属簇合物	晶体结构	
分类号:	0614.12	0614.82		

以有机双膦和含硫配体桥联的金属簇合物包含 金属 - 有机配体和金属 - 金属多种键合结构、因而 可以形成形式多样的电荷转移跃迁,并在此过程中 呈现出丰富的荧光性能,因此,近年来,该类金属簇 合物已经逐渐成为光致发光分子材料研究的热点课 题之一^[1-3]。鉴于二(二苯基膦)甲烷(dppm)的配位 柔韧性和吡咯烷二硫代氨基甲酸根([S2CNC4H8]-) 与金属桥联方式的多样性,通过自组装可能形成 含有多种配体的异核金属分子簇骼 [4~7]。本文以具 有易被取代的配位溶剂分子的双核金属单元 [Ag2(µ-dppm)2(MeCN)4](SbF6)2 和可提供潜在硫桥 联特性的金属单元 Pd(S2CNC4H8)2 为砌块, 通过结 构元件间的重排和分子自组装过程、合成了具有异 四核簇骼结构的簇合物 $[Ag_2Pd_2(\mu-dppm)_2(\mu-S_2CN)]$ C4H8)2(µ3-S2CNC4H8)2](SbF6)2·Et2O(1)和异双核 簇骼结构的簇合物[AgPd(S₂CNC₄H₈)(μ-dppm)₂] (SbF₆)・H₂O(2), 并通过元素分析、IR 和 X-射线单 晶衍射对其结构进行了表征。

1 实验部分

1.1 仪器和试剂

元素分析用 Perking-Elmer 240C 型自动元素分 析仪,单晶衍射实验用 Simens Smart CCD 衍射仪。红 外光谱由 Magna 750 红外光谱仪用 KBr 压片法测 定。所用试剂均为分析纯,所用溶剂全部经过干燥 并蒸馏提纯,使用前保存在氩气氛中。 1.2 合成

实验所有操作都是在氩气条件下采用 Schlenk 系统完成。

[Ag₂(μ-dppm)₂(MeCN)₄](SbF₆)₂: 将 300 mg (0.78mmol) dppm 溶解于 3mL乙腈中,加入 268mg (0.78mmol) AgSbF₆,在蔽光的条件下搅拌 8h 后,加 入 30mL乙醚,析出大量白色沉淀,固体经过滤、乙 醚洗涤后真空干燥,获得 512mg 白色粉末,产率 85%。

Pd(S₂CNC₄H₈)₂: 将 200mg(0.61mmol) K₂PdCl₄ 溶解于 10mL 蒸馏水中, 在搅拌下, 迅速加入 NH₄(S₂CNC₄H₈)(345mg/2.1mmol)的乙醇溶液,立即 生成大量浅黄色沉淀, 经过滤洗涤后真空干燥, 得 223mg 土黄色固体, 产率 90%。

配合物 1: 称取 76 mg(0.05mmol)的 $[Ag_2(\mu dppm)_2(MeCN)_4](SbF_6)_2,溶于 3mL 乙腈溶液中,加$ $人 20mg(0.05mmol) Pd(S_2CNC_4H_8)_2,搅拌 0.5h 后,$ 溶液逐渐生成土黄色沉淀,将沉淀过滤分离后,用1.5mL 乙腈和 CHCl₃ 的混合溶液(体积比 1:1)将沉淀溶解,并用乙醚进行慢扩散获得适于 X 射线单晶衍射分析的红色单晶。元素分析实验值(%): C39.23; H 4.14, N 2.35;按 C₃₉H₄₈AgF₆N₂OP₂PdS₄Sb 的理论值(%): C 39.00, H 4.03, N 2.33。

配合物 2: 将滤出配合物 1 后的滤液真空蒸发 至 1mL, 滴加 0.5mL CHCl₃, 用乙醚慢扩散得到浅黄 色单晶体。元素分析实验值(%):C 41.17, H 3.26, N 1.77; 按 C₅₇H₅₂AgF₁₂N₂O₂P₄PdS₂Sb₂ 的理论值(%):C

收稿日期:2003-02-26。收修改稿日期:2003-06-11。

国家自然科学基金资助项目(No. 20277009)。

^{*} 通讯联系人。E-mail: chshuang@ scut. edu. cn

第一作者:司徒粤,男,27岁,硕士研究生;研究方向:金属含硫配合物的合成与表征。

40.98, H 3. 14, N 1.68°

1.3 晶体结构的测定

分别取一定大小的单晶置于 SIMENS SMART CCD 型衍射仪上,用石墨单色化的 Mo Ka(0.071073 nm)辐射为光源,在 293(2)K下,分别收集衍射点。 两个配合物均由 Patterson 法解出,对非氢原子坐标 和各项异性温度因子利用 SHELXL-97 程序进行全 矩阵最小二乘法精修,氢原子坐标由理论加氢方法 确定。主要晶体学数据列于表 1。配合物 1: w = 1/[$\sigma^2(F_o^2) + (0.0320P)^2 + 36.2985P$], $P = (F_o^2 + 2F_o^2)/3$,末轮优化的最大参数位移 (Δ/σ) max = 0, S = 1.205; 配合物 2: $w = 1/[\sigma^2(F_o^2) + (0.0560P)^2 + 65.7115P$], $P = (F_o^2 + 2F_o^2)/3$,末轮优化的最大 参数位移(Δ/σ) max = 0.006, S = 1.295。

CCDC: 1, 213613; 2, 213612.

2 结果与讨论

2.1 晶体结构的表述

配合物1的主要键长和键角分别列于表2和表 3,其晶体结构如图1所示。配合物1由[Ag₂Pd₂(μ-

图 1 配合物 1 的分子结构 Fig. 1 Molecular structure of complex 1

dppm)₂(μ-S₂CNC₄H₈)₂(μ₃-S₂CNC₄H₈)₂]²⁺配阳离子、 SbF₆⁻配阴离子和溶剂 Et₂O 组成。钯原子与 3 个 [S₂CNC₄H₈]⁻基团的 S 原子以及 1 个 dppm 基团的 P 原子配位构成一个近似的平面四边形结构, Ag 原子 则与三个 S 原子及 1 个 P 原子形成四面体结构。 Pd-Ag 键长为 0.31966(12) nm, Ag-Ag 键长为

表 1 配合物 1 和配合物 2 的晶体学数据 Table 1 Crystallographic Data of Complex 1 and 2

crystal data	complex 1	complex 2
crystal color, shape	red prism	yellow prism
empirical formula	C39H48AgF6N2OP2PdS4Sb	$C_{\$7}H_{\$2}AgF_{12}N_2O_2P_4PdS_2Sb_2$
formula weight		
dimension / mm ³	0. 36 × 0. 34 × 0. 26	0. 50 × 0. 40 × 0. 40
crystal system	monoclinic	monoclinic
space group	P21/c	Cc
a/nm	1.14370(3)	2.74136(6)
b/nm	1.39025(4)	1.04317(2)
c/nm	2.93579(8)	2. 523990(10)
β∕(°)	95. 173(1)	106.516(1)
V∕nm³	4.6490(2)	6.9201(2)
Z	2	4
$D_{\rm c}/({\rm g\cdot cm^{-3}})$	1. 716	1. 604
$\theta / (\circ)$	$1.39 \leq \theta \leq 24.00$	$1.55 \leq \theta \leq 25.12$
h	$-6 \leq h \leq 13$	$-31 \leq h \leq 32$
k	$-16 \leq k \leq 14$	$-12 \leq k \leq 10$
l	$-34 \leq l \leq 35$	$-30 \leq l \leq 18$
F(000)	2384	3276
observed reflection	5103	5987
total reflection	13499	11051
independent reflection	7250	7542
R	0. 0662	0. 0633
wR	0. 1302	0. 1568
largest diff. peak and hole∕(e • nm ⁻³)	900 and - 784	844 and - 776

第9期

表 2 配合物 1 的部分键长

· 985 ·

Table 2 Selected Bond Lengths(nm) of Complex 1								
Pd(1)-P(1)	0.2282(3)	Ag(1)-Ag(1)A	0.33723(16)	P(1)-C(11)	0.1825(10)	N(2)-C(65)	0.1476(14)	
Pd(1)-S(3)	0.2326(3)	S(1)-C(60)	0.1725(11)	P(2)-C(41)	0.1817(10)	N(2)-C(62)	0.1496(14)	
Pd(1)-S(2)	0.2342(3)	S(1)-Ag(1)A	0.2601(3)	P(2)-C(31)	0.1830(10)	C(54)-C(55)	0.1506(19)	
Pd(1)-S(4)	0.2360(3)	S(2)-C(60)	0.1749(11)	P(2)-C(10)	0.1845(10)	C(62)-C(63)	0.1507(19)	
Pd(1)-Ag(1)	0.31966(12)	S(3)-C(50)	0.1717(10)	N(1)-C(50)	0.1309(12)	C(63)-C(64)	0.143(2)	
Ag(1)-P(2)	0.2425(3)	S(4) - C(50)	0.1719(11)	N(1)-C(55)	0.1473(13)	C(64)-C(65)	0.1516(18)	
Ag(1)-S(1)A	0.2601(3)	S(4)-Ag(1)A	0.2902(3)	N(1)-C(52)	0.1492(14)	C(52)-C(53)	0.1481(16)	
Ag(1)-S(1)	0.2622(3)	P(1)-C(21)	0.1816(11)	N(2)-C(60)	0.1303(13)	C(53)-C(54)	0.139(2)	
Ag(1)-S(4)A	0.2902(3)	P(1)-C(10)	0.1822(10)					

表 3 配合物 1 的部分键角 Table 3 Selected Bond Angles(°) of Complex 1

					_		
P(1)-Pd(1)-S(3)	98.05(10)	P(1)-Pd(1)-Ag(1)	86.15(7)	S(1)A-Ag(1)-S(1)	99.58(8)	S(1)-Ag(1)-Pd(1)	82.03(7)
P(1)-Pd(1)-S(2)	90.53(10)	S(3)-Pd(1)-Ag(1)	113.75(8)	P(2)-Ag(1)-S(4)A	110.19(8)	S(4)A-Ag(1)-Pd(1)	160.20(6)
S(3)-Pd(1)-S(2)	168.17(11)	S(2)-Pd(1)-Ag(1)	74.78(8)	S(1)A-Ag(1)-S(4)A	86.44(8)	P(2)-Ag(1)-Ag(1)A	162.34(8)
P(1)-Pd(1)-S(4)	171.28(10)	S(4)-Pd(1)-Ag(1)	101.48(7)	S(1)-Ag(1)-S(4)A	89. 74(8)	S(1)A-Ag(1)-Ag(1)A	50.06(6)
S(3)-Pd(1)-S(4)	75.11(9)	P(2)-Ag(1)-S(1)A	132.02(9)	P(2)-Ag(1)-Pd(1)	89.23(7)	S(1)-Ag(1)-Ag(1)A	49.52(6)
S(2)-Pd(1)-S(4)	95.52(10)	$P(2)-A_{g}(1)-S(1)$	124. 15(9)	S(1)A-Ag(1)-Pd(1)	77.30(7)	S(4)A-Ag(1)-Ag(1)A	87.05(6)
Pd(1)-Ag(1)-Ag(1)A	73.90(3)	C(60)-S(1)-Ag(1)A	104.3(3)	Ag(1)A-S(1)-Ag(1)	80.42(8)	C(60)-S(2)-Pd(1)	99.8(3)
C(50)-S(3)-Pd(1)	86.4(4)	C(50)-S(4)-Pd(1)	85.3(4)	C(50)-S(4)-Ag(1)A	109.6(4)	Pd(1)-S(4)-Ag(1)A	96.78(9)
C(41)-P(2)-Ag(1)	111.4(4)	C(31)-P(2)-Ag(1)	116.9(3)	C(10)-P(2)-Ag(1)	113.8(3)		

0.33723(16) nm,小于这两种金属的范德华半径之和(Ag-Ag: 0.344nm, Ag-Pd: 0.330nm)^[7,8],说明该化合物存在着金属-金属键作用。

簇合物分子中存在着多重的配体桥联金属原子 的配位结构, 两个 dppm 配体分别桥联 1 个钯原子 和1个银原子, Pd-P和 Ag-P 的平均键长分别为 0.2282nm 和 0.2425nm。4 个[S2CNC4H8] - 呈现两种 不同的配位方式、其中 2 个 [S₂CNC₄H₈]⁻配体分别桥 联两银一钯三个金属原子,其余的两个[S2CNC4H8]-配体则分别先与1个钯原子螯合成键再与另一个银 原子桥联, Pd-S 的平均键长为 0. 2427nm, 与化合物 [Pd(S₂CNEt₂) {Ph₂P(CH₂) ₂PPh₂}]*的相应键长基本 一致^[9]。S(1)与S(1)A分别作为桥联原子双重桥联 Ag(1)与 Ag(1)A 而构成一个四边形平面,在该平面 中, Ag(1)-S(1), Ag(1)-S(1)A, S(1)-Ag(1)A 的键长 分别为 0.2622(3) nm, 0.2601(3) nm 和 0.2601(3) nm, 同时相应的 S(1) A-Ag(1)-S(1) 和 Ag(1) A-S(1) -Ag(1)的键角分别为 99.58(8)°和 80.42(8)°,表明 分子中心形成一个近似的平行四边形几何结构。

配合物 2 主要键长键角见表 4, 晶体结构如图 2 所示, 银钯原子之间的距离为 0. 29616(17)nm, 小于 配合物 1 中的相应 Pd-Ag 键长 (0. 31966(12) nm),

图 2 配合物 2 的分子结构 Fig. 2 Molecular structure of complex 2

且小于两种金属的范德华半径之和,说明该化合物 存在着的比较强的金属 - 金属键作用。[S₂CNC₄H₈]⁻ 与钯原子螯合成键,Pd-S 平均键长为 0.2344nm, S(1)-Pd(1)-S(2)键角为 75.20(16)°,与配合物 1 及配合物 Pd(S₂CNC₄H₈)₂的相应键长键角基本一 致^[10]。两个 dppm 配体双重桥联银钯两个金属原子, Pd(1)-P(4),Ag(1)-P(1)的键长分别为 0.2301(4) nm 和 0.2468(5) nm,均大于配合物 1 中的相应键 长,银原子上保留 1 个配位的乙腈溶剂分子,表明配 合物 2 为配合物 1 自组装过程的一种相对稳定的中 · 986 ·

第19卷

表 4	配合物2的部分键长和键角	
-----	--------------	--

Ladie 4 Selected Bond Lengths (nm) and Bond Angles (°) of Con	nplex	: 2
---	-------	-----

Pd(1)-P(4)	0.2301(4)	Pd(1)-P(2)	0.2303(4)	Pd(1)-S(1)	0.2341(5)	Pd(1)-S(2)	0.2347(4)
Pd(1)-Ag(1)	0.29616(17)	$A_{g(1)}-N(2)$	0.2288(19)	Ag(1)-P(1)	0.2468(5)	Ag(1)-P(3)	0.2477(5)
S(1)-C(1)	0.1702(17)	S(2)-C(1)	0.1715(18)	P(1)-C(11)	0.1781(18)	P(1)-C(21)	0.1822(17)
P(1)-C(10)	0.1850(17)	N(1)-C(1)	0.131(2)	N(1)-C(2)	0.148(2)	N(1)-C(5)	0.150(2)
N(2)-C(6)	0.113(3)	C(6)-C(7)	0.146(3)	C(2)-C(3)	0.156(3)	C(3)-C(4)	0.135(4)
C(4)-C(5)	0,154(3)	P(2)-C(10)	0.1822(16)	P(3)-C(30)	0.1843(16)	P(4)-C(30)	0.1842(16)
P(4)-Pd(1)-P(2)	99. 53(16)	P(4)-Pd(1)-S(1)	167. 23(16)	P(2)-Pd(1)-S(1)	93. 20(16)	P(4)-Pd(1)-S(2)	92. 04(16)
P(2)-Pd(1)-S(2)	168.12(16)	S(1)-Pd(1)-S(2)	75. 20(16)	P(4) - Pd(1) - Ag(1)	90.02(11)	P(2)-Pd(1)-Ag(1)	100.11(11)
S(1)-Pd(1)-Ag(1)	86.77(14)	S(2)-Pd(1)-Ag(1)	77.06(13)	N(2)-Ag(1)-P(1)	111.3(5)	N(2)-Ag(1)-P(3)	113.2(6)
P(1)-Ag(1)-P(3)	129.01(15)	N(2)-Ag(1)-Pd(1)	124.3(6)	P(1)-Ag(1)-Pd(1)	82.84(11)	P(3)-Ag(1)-Pd(1)	91. 99(11)
C(1)-S(1)-Pd(1)	85.6(6)	C(1)-S(2)-Pd(1)	85.1(5)	C(11)-P(1)-Ag(1)	126. 4(6)	C(21)-P(1)-Ag(1)	99.6(6)
C(10)-P(1)-Ag(1)	115.2(6)	C(31)-P(2)-Pd(1)	112.4(6)	C(41)-P(2)-Pd(1)	117.4(5)	C(10)-P(2)-Pd(1)	109.3(6)
C(61)-P(3)-Ag(1)	117.1(6)	C(51)-P(3)-Ag(1)	118.3(6)	C(30)-P(3)-Ag(1)	109.3(6)	C(81)-P(4)-Pd(1)	120.8(5)
C(71)-P(4)-Pd(1)	111.1(6)	C(30)-P(4)-Pd(1)	110.5(5)	C(6)-N(2)-Ag(1)	163(2)		

间产物。

2.2 红**外光谱分析**

配合物 1 在 1525 cm^{-1} 和 1437 cm^{-1} 处分别出现 很强的吸收峰,前者为 $[S_2 \text{CNC}_4 \text{H}_8]^-$ 螯合配位时 CN 伸缩振动吸收峰,后者则为 $[S_2 \text{CNC}_4 \text{H}_8]^-$ 桥联配位时 的 CN 伸缩振动吸收峰。在配合物 2 中,由于 $[S_2 \text{CNC}_4 \text{H}_8]^-$ 不存在桥联配位,所以只是在 1537cm⁻¹ 处出现唯一的 $\nu(\text{C}=\text{N})$ 吸收峰,这与所报道的 晶体结构相一致^[11]。

参考文献

- XU Hong-Wu, CHEN Zhong-Ning, Ishizaka S., Kitamura N., WU Ji-Gui Chem. Commun., 2002, 17, 1934.
- [2] Yam V. W. W., Cheng E. C. C., Cheung K. K. Angew. Chem. Int. Ed. Engl., 1999, 38, 197.
- [3] Yam V. W. W., Lam C. H., Fung W. K. M., Cheung K. K. Inorg. Chem., 2000, 40, 3435.
- [4] Cotton F. A., Hong B. Prog. Inorg. Chem., 1992, 40, 179.

- [5] Blake A. J., Kathirgamanathan P., Toohey M. J. Inorg. Chim. Acta, 2000, 303, 137.
- [6] Airoldi C., De Oliveira S. F., Ruggiero S. G., Lechat J. R. Inorg. Chim. Acta, 1990, 174, 103.
- [7] Ebihara M., Tokoro K., Maeda M., Ogami M., Imaeda K., Sakurai K., Masuda H., Kawamura T. J. Chem. Soc., Dalton Trans, 1994, 3621.
- [8] Romero A. M., Salas J. M., Quirós M., Sónchez M. P., Molina J., Bahraoui J. E., Faure R. J. Mol. Struct., 1995, 354, 189.
- [9] Exarchos G., Robinson S. D., Steed J. W. Polyhedron, 2000, 19(12), 1511.
- [10] Riekkola M. L., Pakkanen T., Niinisto L. Acta Chem. Scand. Ser. A, 1983, 37, 807.
- [11] Nakamoto K. (中本一雄), Translated by HUANG De-Ru (黃德如), WANG Ren-Qing(汪仁庆) Infrared and Raman Spectra of Inorganic and Coordination Compound, Forth Edition(无机和配位化合物的红外和拉曼光谱), Beijing: Chemical Industry Press, 1991, p390.

G. Data

Synthesis and Crystal Structures of Heterometallic Ag (I), Pd (II) Complexes

SITU Yue HUANG Shao-Bin* ZHANG Ju-Guang

(Department of Applied Chemistry, South China University of Technology, Guangzhou 510640)

The complexes of $[Ag_2Pd_2(\mu-dppm)_2(\mu-S_2CNC_4H_8)_2(\mu_3-S_2CNC_4H_8)_2]$ (SbF₆)₂ · Et₂O (1) and $[AgPd(S_2CNC_4H_8)(\mu-dppm)_2]$ (SbF₆) · H₂O (2) were synthesized and their single crystal structures were determined by X-ray diffraction. The complex 1 is monoclinic system, space group $P2_1/c$ with a = 1.14370(3) nm, b = 1.39025(4) nm, c = 2.93579(8) nm, $\beta = 95.173(1)^\circ$, V = 4.6490(2) nm³, Z = 4, $D_c = 1.716g$ · cm⁻³, μ (Mo K α) = 1682cm⁻¹, F(000) = 2384, $M_r = 2401.98$, R = 0.0662, wR = 0.1302. The complex 2 is monoclinic system, space group Cc with a = 2.74136(6) nm, b = 1.04317(2) nm, c = 2.523990(10) nm, $\beta = 95.173(1)^\circ$, V = 4.6490(2) nm³, Z = 4, $D_c = 1.716g$ · cm⁻³, μ (Mo K α) = 1682cm⁻¹, F(000) = 2384, $M_r = 2401.98$, R = 0.0662, wR = 0.1302. The complex 2 is monoclinic system, space group Cc with a = 2.74136(6) nm, b = 1.04317(2) nm, c = 2.523990(10) nm, $\beta = 95.173(1)^\circ$, V = 4.6490(2) nm³, Z = 4, $D_c = 1.716g$ · cm⁻³, μ (Mo K α) = 1682cm⁻¹, F(000) = 2384, $M_r = 2401.98$, R = 0.0662, wR = 0.1302. The complex 2 is monoclinic system, space group Cc with a = 2.74136(6) nm, b = 1.04317(2) nm, c = 2.523990(10) nm, $\beta = 95.173(1)^\circ$, V = 4.6490(2) nm³, Z = 4, $D_c = 1.716g$ · cm⁻³, μ (Mo K α) = 1682cm⁻¹, F(000) = 2384, $M_r = 2401.98$, R = 0.0662, wR = 0.1302. CCDC: 1, 213613; 2, 213612.

Keywords: diphosphine heterometallic complex crystal structure