Vol. 19, No. 9 Sep., 2003

研究简报

Ag(I)、Pd(II)异核金属簇合物的制备和晶体结构研究

司徒粤 黄少斌* 张居光 (华南理工大学应用化学系,广州 510640)

晶体结构

关键词: 双膦 异核金属簇合物

分类号: 0614.12 0614.82

以有机双膦和含硫配体桥联的金属簇合物包含 金属-有机配体和金属-金属多种键合结构、因而 可以形成形式多样的电荷转移跃迁,并在此过程中 呈现出丰富的荧光性能,因此,近年来,该类金属簇 合物已经逐渐成为光致发光分子材料研究的热点课 题之一[1-3]。鉴于二(二苯基膦)甲烷(dppm)的配位 柔韧性和吡咯烷二硫代氨基甲酸根 ([S₂CNC₄H₈]⁻) 与金属桥联方式的多样性, 通过自组装可能形成 含有多种配体的异核金属分子簇骼 [4~7]。本文以具 有易被取代的配位溶剂分子的双核金属单元 [Ag₂(μ-dppm)₂(MeCN)₄](SbF₆)₂ 和可提供潜在硫桥 联特性的金属单元 Pd(S2CNC4H8)2 为砌块, 通过结 构元件间的重排和分子自组装过程、合成了具有异 四核簇骼结构的簇合物[Ag₂Pd₂(μ-dppm)₂(μ-S₂CN C₄H₈)₂(μ₃-S₂CNC₄H₈)₂](SbF₆)₂·Et₂O (1)和异双核 簇 骼 结 构 的 簇 合 物 [AgPd(S₂CNC₄H₈) (μ-dppm) ₂] (SbF₆)・H₂O (2), 并通过元素分析、IR 和 X- 射线单 晶衍射对其结构进行了表征。

1 实验部分

1.1 仪器和试剂

元素分析用 Perking-Elmer 240C 型自动元素分析仪,单晶衍射实验用 Simens Smart CCD 衍射仪。红外光谱由 Magna 750 红外光谱仪用 KBr 压片法测定。所用试剂均为分析纯,所用溶剂全部经过干燥并蒸馏提纯,使用前保存在氩气氛中。

1.2 合成

实验所有操作都是在氩气条件下采用 Schlenk 系统完成。

[Ag₂(μ-dppm)₂(MeCN)₄](SbF₆)₂: 将 300 mg (0.78mmol) dppm 溶解于 3mL 乙腈中,加人 268mg (0.78mmol) AgSbF₆,在蔽光的条件下搅拌 8h 后,加人 30mL 乙醚,析出大量白色沉淀,固体经过滤、乙醚洗涤后真空干燥,获得 512mg 白色粉末,产率 85%。

 $Pd(S_2CNC_4H_8)_2$: 将 200mg(0.61mmol) K_2PdCl_4 溶解于 10mL 蒸馏水中,在搅拌下,迅速加入 $NH_4(S_2CNC_4H_8)(345mg/2.1mmol)$ 的乙醇溶液,立即生成大量浅黄色沉淀,经过滤洗涤后真空干燥,得 223mg 土黄色固体,产率 90%。

配合物 1: 称取 76 mg(0.05mmol) 的 $[Ag_2(\mu-dppm)_2(MeCN)_4]$ (SbF₆) 2, 溶于 3mL 乙腈溶液中,加人 20mg(0.05mmol) Pd($S_2CNC_4H_8$) 2, 搅拌 0.5h 后,溶液逐渐生成土黄色沉淀,将沉淀过滤分离后,用 1.5mL 乙腈和 CHCl₃ 的混合溶液 (体积比 1:1) 将沉淀溶解,并用乙醚进行慢扩散获得适于 X 射线单晶衍射分析的红色单晶。元素分析实验值(%): C 39.23; H 4.14, N 2.35; 按 $C_{39}H_{48}AgF_6N_2OP_2PdS_4Sb$ 的理论值(%): C 39.00, H 4.03, N 2.33。

配合物 2: 将滤出配合物 1 后的滤液真空蒸发至 1mL, 滴加 0.5mL CHCl₃, 用乙醚慢扩散得到浅黄色单晶体。元素分析实验值(%): C 41.17, H 3.26, N 1.77; 按 C₅₇H₅₂AgF₁₂N₂O₂P₄PdS₂Sb₂ 的理论值(%): C

收稿日期: 2003-02-26。收修改稿日期: 2003-06-11。

国家自然科学基金资助项目(No. 20277009)。

^{*}通讯联系人。E-mail: chshuang@ scut. edu. cn

第一作者:司徒粤,男,27岁,硕士研究生;研究方向:金属含硫配合物的合成与表征。

40.98, H 3.14, N 1.68_o

1.3 晶体结构的测定

分别取一定大小的单晶置于 SIMENS SMART CCD 型衍射仪上, 用石墨单色化的 $Mo K\alpha(0.071073 \, \text{nm})$ 辐射为光源, 在 293(2) K 下, 分别收集衍射点。两个配合物均由 Patterson 法解出,对非氢原子坐标和各项异性温度因子利用 SHELXL-97 程序进行全矩阵最小二乘法精修,氢原子坐标由理论加氢方法确定。主要晶体学数据列于表 1。配合物 1: $w=1/[\sigma^2(F_o^2) + (0.0320P)^2 + 36.2985P], P=(F_o^2 + 2F_o^2)/3, 末轮优化的最大参数位移 <math>(\Delta/\sigma)_{\text{max}} = 0$, S=1.205; 配合物 2: $w=1/[\sigma^2(F_o^2) + (0.0560P)^2 + 65.7115P], <math>P=(F_o^2 + 2F_o^2)/3$, 末轮优化的最大参数位移 $(\Delta/\sigma)_{\text{max}} = 0.006$, S=1.295。

CCDC: 1, 213613; 2, 213612°

2 结果与讨论

2.1 晶体结构的表述

配合物 1 的主要键长和键角分别列于表 2 和表 3, 其晶体结构如图 1 所示。配合物 1 由 $[Ag_2Pd_2(\mu$ -

图 1 配合物 1 的分子结构

Fig. 1 Molecular structure of complex 1

dppm) $_2$ (μ-S₂CNC₄H₈) $_2$ (μ₃-S₂CNC₄H₈) $_2$] 2 +配阳离子、SbF₆-配阴离子和溶剂 Et₂O 组成。钯原子与 3 个 [S₂CNC₄H₈] -基团的 S 原子以及 1 个 dppm 基团的 P 原子配位构成一个近似的平面四边形结构, Ag 原子则与三个 S 原子及 1 个 P 原子形成四面体结构。Pd-Ag 键长为 0.31966(12) nm, Ag-Ag 键长为

表 1 配合物 1 和配合物 2 的晶体学数据
Table 1 Crystallographic Data of Complex 1 and 2

crystal data	complex 1	complex 2		
crystal color, shape	red prism	yellow prism		
empirical formula	$C_{39}H_{48}AgF_6N_2OP_2PdS_4Sb\\$	$C_{57}H_{52}AgF_{12}N_2O_2P_4PdS_2Sb$		
formula weight				
dimension/mm³	$0.36 \times 0.34 \times 0.26$	$0.50 \times 0.40 \times 0.40$		
crystal system	monoclinic	monoclinic		
space group	$P2_1/c$	Cc		
a/nm	1. 14370(3)	2. 74136(6)		
b/nm	1. 39025(4)	1.04317(2)		
c/nm	2. 93579(8)	2. 523990(10)		
β/(°)	95. 173(1)	106. 516(1)		
V/nm³	4. 6490(2)	6. 9201(2)		
Z	2	4		
$D_{\rm c}/({\rm g\cdot cm^{-3}})$	1. 716	1. 604		
θ/(°)	$1.39 \le \theta \le 24.00$	$1.55 \le \theta \le 25.12$		
h	$-6 \leq h \leq 13$	$-31 \leqslant h \leqslant 32$		
k	$-16 \leqslant k \leqslant 14$	$-12 \leqslant k \leqslant 10$		
l	$-34 \leq l \leq 35$	$-30 \leqslant l \leqslant 18$		
F(000)	2384	3276		
observed reflection	5103	5987		
total reflection	13499	11051		
independent reflection	7250	7542		
R	0. 0662	0. 0633		
wR	0. 1302	0. 1568		
largest diff. peak and hole/(e · nm - 3)	900 and - 784	844 and - 776		

表 2 配合物 1 的部分键长

Table 2 Selected Bond Lengths (nm) of Complex 1

Pd(1)-P(1)	0. 2282(3)	Ag(1)-Ag(1)A	0. 33723(16)	P(1)-C(11)	0. 1825(10)	N(2)-C(65)	0. 1476(14)
Pd(1)-S(3)	0.2326(3)	S(1)-C(60)	0.1725(11)	P(2)-C(41)	0. 1817(10)	N(2)-C(62)	0. 1496(14)
Pd(1)-S(2)	0.2342(3)	S(1)-Ag(1)A	0.2601(3)	P(2)-C(31)	0. 1830(10)	C(54)-C(55)	0. 1506(19)
Pd(1)-S(4)	0.2360(3)	S(2)-C(60)	0.1749(11)	P(2)-C(10)	0. 1845(10)	C(62)-C(63)	0.1507(19)
Pd(1)-Ag(1)	0.31966(12)	S(3)-C(50)	0.1717(10)	N(1)-C(50)	0.1309(12)	C(63)-C(64)	0.143(2)
Ag(1)-P(2)	0.2425(3)	S(4)-C(50)	0. 1719(11)	N(1)-C(55)	0. 1473(13)	C(64)-C(65)	0.1516(18)
Ag(1)-S(1)A	0.2601(3)	S(4)-Ag(1)A	0.2902(3)	N(1)-C(52)	0. 1492(14)	C(52)-C(53)	0. 1481(16)
Ag(1)-S(1)	0.2622(3)	P(1)-C(21)	0.1816(11)	N(2)-C(60)	0. 1303(13)	C(53)-C(54)	0.139(2)
Ag(1)-S(4)A	0.2902(3)	P(1)-C(10)	0.1822(10)				

表 3 配合物 1 的部分键角

Table 3 Selected Bond Angles(°) of Complex 1

P(1)-Pd(1)-S(3)	98. 05(10)	P(1)-Pd(1)-Ag(1)	86. 15(7)	S(1)A-Ag(1)-S(1)	99. 58(8)	S(1)-Ag(1)-Pd(1)	82. 03(7)
P(1)-Pd(1)-S(2)	90.53(10)	S(3)-Pd(1)-Ag(1)	113.75(8)	P(2)-Ag(1)-S(4)A	110.19(8)	S(4)A-Ag(1)-Pd(1)	160. 20(6)
S(3)-Pd(1)-S(2)	168. 17(11)	S(2)-Pd(1)-Ag(1)	74. 78(8)	S(1)A-Ag(1)-S(4)A	86. 44(8)	P(2)-Ag(1)-Ag(1)A	162. 34(8)
P(1)-Pd(1)-S(4)	171. 28(10)	S(4)-Pd(1)-Ag(1)	101.48(7)	S(1)-Ag(1)-S(4)A	89. 74(8)	S(1)A-Ag(1)-Ag(1)A	50.06(6)
S(3)-Pd(1)-S(4)	75. 11(9)	P(2)-Ag(1)-S(1)A	132.02(9)	P(2)-Ag(1)-Pd(1)	89. 23(7)	S(1)-Ag(1)-Ag(1)A	49. 52(6)
S(2)-Pd(1)-S(4)	95. 52(10)	P(2)-Ag(1)-S(1)	124. 15(9)	S(1)A-Ag(1)-Pd(1)	77. 30(7)	S(4)A-Ag(1)-Ag(1)A	87.05(6)
Pd(1)-Ag(1)-Ag(1)A	73.90(3)	C(60)-S(1)-Ag(1)A	104.3(3)	Ag(1)A-S(1)-Ag(1)	80. 42(8)	C(60)-S(2)-Pd(1)	99.8(3)
C(50)-S(3)-Pd(1)	86.4(4)	C(50)-S(4)-Pd(1)	85.3(4)	C(50)-S(4)-Ag(1)A	109.6(4)	Pd(1)-S(4)-Ag(1)A	96. 78(9)
C(41)-P(2)-Ag(1)	111.4(4)	C(31)-P(2)-Ag(1)	116.9(3)	C(10)-P(2)-Ag(1)	113.8(3)		

0. 33723(16) nm, 小于这两种金属的范德华半径之和(Ag-Ag: 0. 344nm, Ag-Pd: 0. 330nm)^[7,8], 说明该化合物存在着金属 - 金属键作用。

簇合物分子中存在着多重的配体桥联金属原子 的配位结构,两个 dppm 配体分别桥联 1 个钯原子 和 1 个银原子, Pd-P 和 Ag-P 的平均键长分别为 0. 2282nm 和 0. 2425nm。4 个[S₂CNC₄H₈]-呈现两种 不同的配位方式、其中 2 个[S₂CNC₄H₈]-配体分别桥 联两银一钯三个金属原子, 其余的两个[S2CNC4H8]-配体则分别先与1个钯原子螯合成键再与另一个银 原子桥联, Pd-S 的平均键长为 0. 2427nm, 与化合物 [Pd(S₂CNEt₂) {Ph₂P(CH₂) ₂PPh₂}] + 的相应键长基本 一致[9]。S(1)与S(1)A分别作为桥联原子双重桥联 Ag(1)与 Ag(1)A 而构成一个四边形平面, 在该平面 中, Ag(1)-S(1), Ag(1)-S(1)A, S(1)-Ag(1)A 的键长 分别为 0.2622(3) nm, 0.2601(3) nm 和 0.2601(3) nm, 同时相应的 S(1) A-Ag(1)-S(1) 和 Ag(1) A-S(1) -Ag(1) 的键角分别为 99.58(8)°和 80.42(8)°, 表明 分子中心形成一个近似的平行四边形几何结构。

配合物 2 主要键长键角见表 4, 晶体结构如图 2 所示, 银钯原子之间的距离为 0. 29616(17)nm, 小于配合物 1 中的相应 Pd-Ag 键长 (0. 31966(12) nm),

图 2 配合物 2 的分子结构

Fig. 2 Molecular structure of complex 2

且小于两种金属的范德华半径之和,说明该化合物存在着的比较强的金属-金属键作用。 $[S_2CNC_4H_8]^-$ 与钯原子螯合成键,Pd-S 平均键长为 0. 2344nm,S(1)-Pd(1)-S(2) 键角为 75. 20(16)°,与配合物 1及配合物 Pd($S_2CNC_4H_8$)₂ 的相应键长键角基本一致^[10]。两个 dppm 配体双重桥联银钯两个金属原子,Pd(1)-P(4),Ag(1)-P(1) 的键长分别为 0. 2301(4) nm 和 0. 2468(5) nm,均大于配合物 1 中的相应键长,银原子上保留 1 个配位的乙腈溶剂分子,表明配合物 2 为配合物 1 自组装过程的一种相对稳定的中

表 4 配合物 2 的部分键长和键角

Table 4 Selected Bond Lengths (nm) and Bond Angles (°) of Complex 2

Pd(1)-P(4)	0. 2301(4)	Pd(1)-P(2)	0. 2303(4)	Pd(1)-S(1)	0. 2341(5)	Pd(1)-S(2)	0. 2347(4)
Pd(1)-Ag(1)	0. 29616(17)	Ag(1)-N(2)	0. 2288(19)	Ag(1)-P(1)	0.2468(5)	Ag(1)-P(3)	0.2477(5)
S(1)-C(1)	0.1702(17)	S(2)-C(1)	0.1715(18)	P(1)-C(11)	0.1781(18)	P(1)-C(21)	0.1822(17)
P(1)-C(10)	0.1850(17)	N(1)-C(1)	0.131(2)	N(1)-C(2)	0.148(2)	N(1)-C(5)	0.150(2)
N(2)-C(6)	0.113(3)	C(6)-C(7)	0.146(3)	C(2)-C(3)	0.156(3)	C(3)-C(4)	0.135(4)
C(4)-C(5)	0.154(3)	P(2)-C(10)	0.1822(16)	P(3)-C(30)	0. 1843(16)	P(4)-C(30)	0.1842(16)
P(4)-Pd(1)-P(2)	99. 53(16)	P(4)-Pd(1)-S(1)	167. 23(16)	P(2)-Pd(1)-S(1)	93. 20(16)	P(4)-Pd(1)-S(2)	92. 04(16)
P(2)-Pd(1)-S(2)	168.12(16)	S(1)-Pd(1)-S(2)	75. 20(16)	P(4)-Pd(1)-Ag(1)	90.02(11)	P(2)-Pd(1)-Ag(1)	100.11(11)
S(1)-Pd(1)-Ag(1)	86, 77(14)	S(2)-Pd(1)-Ag(1)	77. 06(13)	$N(2)-A_g(1)-P(1)$	111.3(5)	N(2)-Ag(1)-P(3)	113. 2(6)
P(1)-Ag(1)-P(3)	129. 01 (15)	N(2)-Ag(1)-Pd(1)	124. 3(6)	P(1)-Ag (1) -Pd (1)	82.84(11)	P(3)-Ag(1)-Pd(1)	91. 99(11)
C(1)-S(1)-Pd(1)	85.6(6)	C(1)-S(2)-Pd(1)	85.1(5)	C(11)-P(1)-Ag(1)	126. 4(6)	C(21)-P(1)-Ag(1)	99. 6(6)
C(10)-P(1)-Ag(1)	115. 2(6)	C(31)-P(2)-Pd(1)	112.4(6)	C(41)-P(2)-Pd(1)	117.4(5)	C(10)-P(2)-Pd(1)	109. 3(6)
C(61)-P(3)-Ag(1)	117. 1(6)	C(51)-P(3)-Ag(1)	118. 3(6)	C(30)-P(3)-Ag(1)	109. 3(6)	C(81)-P(4)-Pd(1)	120.8(5)
C(71)-P(4)-Pd(1)	111.1(6)	C(30)-P(4)-Pd(1)	110.5(5)	C(6)-N(2)-Ag(1)	163(2)		

间产物。

2.2 红外光谱分析

配合物 1 在 1525cm⁻¹ 和 1437cm⁻¹ 处分别出现很强的吸收峰,前者为 $[S_2CNC_4H_8]$ - 螯合配位时 CN 伸缩振动吸收峰,后者则为 $[S_2CNC_4H_8]$ - 桥联配位时的 CN 伸缩振动吸收峰。在配合物 2 中,由于 $[S_2CNC_4H_8]$ - 不存在桥联配位,所以只是在 1537 cm⁻¹ 处出现唯一的 $\nu(C=N)$ 吸收峰,这与所报道的晶体结构相一致 [11]。

参 考 文 献

- [1] XU Hong-Wu, CHEN Zhong-Ning, Ishizaka S., Kitamura N., WU Ji-Gui Chem. Commun., 2002, 17, 1934.
- [2] Yam V. W., Cheng E. C. C., Cheung K. K. Angew. Chem. Int. Ed. Engl., 1999, 38, 197.
- [3] Yam V. W. W., Lam C. H., Fung W. K. M., Cheung K. K. Inorg. Chem., 2000, 40, 3435.
- [4] Cotton F. A., Hong B. Prog. Inorg. Chem., 1992, 40, 179.

- [5] Blake A. J., Kathirgamanathan P., Toohey M. J. Inorg. Chim. Acta, 2000, 303, 137.
- [6] Airoldi C., De Oliveira S. F., Ruggiero S. G., Lechat J. R. Inorg. Chim. Acta, 1990, 174, 103.
- [7] Ebihara M., Tokoro K., Maeda M., Ogami M., Imaeda K., Sakurai K., Masuda H., Kawamura T. J. Chem. Soc., Dalton Trans, 1994, 3621.
- [8] Romero A. M., Salas J. M., Quirós M., Sánchez M. P., Molina J., Bahraoui J. E., Faure R. J. Mol. Struct., 1995, 354, 189.
- [9] Exarchos G., Robinson S. D., Steed J. W. Polyhedron, 2000, 19(12), 1511.
- [10] Riekkola M. L., Pakkanen T., Niinisto L. Acta Chem. Scand. Ser. A, 1983, 37, 807.
- [11] Nakamoto K. (中本一雄), Translated by HUANG De-Ru (黄德如), WANG Ren-Qing(汪仁庆) Infrared and Raman Spectra of Inorganic and Coordination Compound, Forth Edition(无机和配位化合物的红外和拉曼光谱), Beijing: Chemical Industry Press, 1991, p390.

Synthesis and Crystal Structures of Heterometallic Ag (I), Pd (II) Complexes

SITU Yue HUANG Shao-Bin* ZHANG Ju-Guang
(Department of Applied Chemistry, South China University of Technology, Guangzhou 510640)

The complexes of $[Ag_2Pd_2(\mu\text{-dppm})_2(\mu\text{-S}_2CNC_4H_8)_2(\mu_3\text{-S}_2CNC_4H_8)_2]$ (SbF₆) $_2$ · Et₂O (1) and $[AgPd(S_2CNC_4H_8)_2(\mu_3\text{-S}_2CNC_4H_8)_2]$ (Algorithm and $[AgPd(S_2CNC_4H_8)_2(\mu_3\text{-S}_2CNC_4H_8)_2]$ (SbF₆) $_2$ · Et₂O (1) and $[AgPd(S_2CNC_4H_8)_2(\mu_3\text{-S}_2CNC_4H_8)_2]$ (Algorithm and $[AgPd(S_2CNC_4H_8)_2(\mu_3\text{-S}_2CNC_4H_$

Keywords: diphosphine heterometallic complex crystal structure