第9期 2003年9月

Vol. 19, No. 9 Sep., 2003

, 研究简报 》

配合物 $[Ce(CH_2 = C(CH_3)COO)_2(NO_3)(Bipy)]$ 的合成及晶体结构

咸春颖* 林 苗

(东华大学化学与化工学院,上海 200051)

关键词:	配合物	合成	晶体结构
分类号:	0614.33		

稀土配合物的研究近几年较为活跃^[1-3],但关 于稀土与不饱和羧酸配位反应的研究却相对较 少^[4-6]。 α , β -不饱和酸由于其对稀土的萃取作用、 相应盐的光学特性以及 C = C 双键对稀土与羧酸配 位的影响等,而引起人们的重视。稀土与 α , β -不饱 和羧酸及 Phen 型配合物的晶体结构已有文献报 道^[6],而有关稀土 - α , β -不饱和羧酸 -2, 2'-联吡啶 (Bipy) 配合物的研究还未见文献报道过,本文合成 了 Ce- α -甲基丙烯酸与 Bipy 的四元混配配合物,并 测定了其晶体结构。

1 实验部分

1.1 试剂与仪器

六水合硝酸铈, 纯度为 99.9%, 上海跃龙有色 金属有限公司; α-甲基丙烯酸, 化学纯, 中国医药集 团上海化学试剂公司; 2, 2'-联吡啶, 分析纯, 上海化 学试剂一厂; 8-羟基喹啉, 分析纯, 上海化学试剂中 心化工厂; 其余试剂均为分析纯。

C、H、N 含量用 Carlo Erba 1106 型元素分析仪 测定; Ce³⁺含量用 EDTA 法滴定; 红外光谱用日本岛 津 408 型红外光谱仪, KBr 压片法测定; 晶体结构用 Rigaku AFC7R 型 X 射线四圆衍射仪测定。

1.2 配合物的合成

称取 Ce(NO₃)₃·6H₂O 0.4mmol,加入 10mL乙 醇溶解,另称取 Bipy 0.6mmol, 8-羟基喹啉 1.0 mmol,加入 10mL乙醇溶解后,再加入 α-甲基丙烯 酸 4.0mmol,混合上述两溶液,放置于温度为(25 ± 1)℃的培养箱中,约2d后析出淡黄色晶体产物。

1.3 晶体结构测定

将单晶置于 Rigaku AFC7R 衍射仪上,用 Mo Ka 射线($\lambda = 0.071039$ nm)石墨单色器以 ω -2 θ 扫描方 式,在2.02° $\leq \theta \leq 28.25$ °范围内于293K 下共收 集衍射数据 6338 个,独立衍射点 4589 个 ($R_{int} =$ 0.0472),其中,4194 个可观测衍射点($I > 2\sigma(I)$) 用于结构修正。晶体结构由直接法解出,重原子用 Patterson 法定出坐标,对结构进行全矩阵最小二乘 法精修,其中非氢原子进行了各项异性精修,氢原子 包括其中但不精修,收敛因子 R = 0.0298, $R_{*} =$ 0.0718,所有计算用 Molecular Structure Corporation 的 TEXSAN 晶体软件包进行。

CCDC: 211278°

2 结果与讨论

2.1 配合物的组成

在此配合物的合成过程中,不能有水的加入,否则将无产物析出,这种情况在我们以前的工作中并 不多见,原因可能是由于 α-甲基丙烯酸和 Bipy 的 配位能力本来就不强,而水分子的存在又进一步降 低了反应的活性和速度所致。该配合物由于含有 C=C不饱和基团,因此可以尝试进行溶液聚合或与 其他单体共聚制得具有荧光或转光性能的高分子材 料,有一定的应用前景。

配合物的元素分析结果(括号内为计算值,%): C: 40.90(40.91); H: 3.35(3.43); N: 7.99(7.95);

收稿日期: 2003-04-08。收修改稿日期: 2003-06-17。

上海市青年基金资助项目(No. 2000QN34)。

^{*}通讯联系人。E-mail: xiancy@ sina. com

第一作者: 咸春颖, 女, 31岁, 博士, 副教授; 研究方向: 稀土配位化学。

Ce: 26.68(26.52) 表明配合物组成为 Ce(CH₂ = C (CH₃)COO)₂(NO₃)(Bipy)。

2.2 IR 谱图分析

自由 Bipy 的环骨架振动峰 $\nu_{\rm FR}$ 由 1580cm⁻¹、 1083cm⁻¹和 1079cm⁻¹移至配合物中的 1592cm⁻¹、 1112cm⁻¹和 1095cm⁻¹, $\delta_{\rm C-H}$ 从 755cm⁻¹和 995cm⁻¹ 移至 769cm⁻¹和 1010cm⁻¹,表明 Bipy 确实参与配 位,环骨架的位移达 12cm⁻¹、29cm⁻¹和 16cm⁻¹,说 明 Bipy 的配位起了稳定化作用。IR 谱图中可观察 到配位 NO₃⁻的特征吸收峰 B₁(ν_4)、A₁(ν_1)、A₂(ν_2)、 B₂(ν_6)分别位于 1466cm⁻¹、1295cm⁻¹、1028cm⁻¹和 826cm⁻¹, $\Delta \nu = \nu_1 - \nu_4 = 171$ cm⁻¹,根据 Curtis 规 则¹⁷, NO₃⁻应为双齿配位。

自由 α - 甲基丙烯酸的 $\nu_{c=c}$ 振动频率由 1650 cm⁻¹移至配合物中的 1640cm⁻¹, 羧基振动峰 ($\nu_{c=0}$ = 1750cm⁻¹) 则分裂为对称伸缩振动 ($\nu_{s(COO^{-})}$) = 1430cm⁻¹) 和反对称伸缩振动 ($\nu_{s(COO^{-})}$) = 1560 cm⁻¹), $\Delta \nu$ = 130cm⁻¹, 表明 α - 甲基丙烯酸应以桥联 方式参与配位, 这与晶体解析结果一致。

2.3 晶体结构分析

配合物分子式为 [Ce(CH₂ = C(CH₃) COO)₂ (NO₃) (Bipy)]₂, 晶体属三斜晶系, *P*1 空间群, 晶胞 参数为: a = 1.00832(3) nm, b = 1.02858(8) nm, c =1.12350(8) nm, $\alpha = 113.9250(10)^\circ$, $\beta = 103.8210$ (10)°, $\gamma = 81.4650(10)^\circ$, V = 1.03252(14) nm³, Z =1, $D_c = 1.700g \cdot cm^{-3}$, F(000) = 522, 分子结构及分 子在晶胞中的排列见图 1 和图 2, 主要键长和键角 列于表 1。

配合物呈双核结构,双核中心离子 Ce³⁺-Ce³⁺#1 之间的距离为 0.40039(4) nm,4 个 α -甲基丙烯酸 根以双齿桥联和三齿桥联方式连接于两个离子之 间,中心离子 Ce (III)分别与4 个羧基中的5 个氧原子 (O(1)、O(2)、O(2)#1、O(3)和O(4)#1),1 个螯合配 位 NO₃⁻的2 个氧原子及1 个 Bipy 分子中的2 个氮 原子配位,配位数为9。Ce³⁺与 α -甲基丙烯酸根中 氧的键长有三类,Ce-O(3)、Ce-O(4)#1 分别为 0.2421(2) nm和0.2427(2) nm;Ce-O(1)和Ce-O(2) #1 平均值为 0.2483(2) nm;Ce-O(2) 为 0.2651(3)

表 1 配合物的部分键长和键角 Table 1 Selected Bond Lengths and Bond Angles

bond	dist. / nm	bond	dist. / nm	bond	dist. / nm		
Ce-O(3)	0,2421(2)	Ce-N(3)	0.3021(3)	0(4)-Ce#1	0.2427(2)		
Ce-O(4)#1	0.2427(2)	Ce-C(11)	0. 2951(4)	O(5)-N(3)	0.1248(4)		
Ce-O(2)#1	0.2444(2)	Ce-Ce#1	0.40039(4)	O(6)-N(3)	0.1288(4)		
Ce-O(2)	0.2651(3)	O(1)-C(11)	0.1229(5)	O(7)-N(3)	0.1211(4)		
Ce-O(1)	0.2521(3)	O(2)-C(11)	0.1280(4)	N(1)-C(10)	0.1344(5)		
Ce-O(6)	0,2575(3)	O(2)-Ce#1	0.2427(2)	N(1)-C(6)	0.1353(5)		
Ce-O(5)	0.2597(3)	O(3)-C(15)	0.1262(4)	N(2)-C(5)	0.1338(4)		
Ce-N(1)	0.2665(3)	O(4)-C(15)	0.1267(4)	N(2)-C(1)	0.1347(5)		
Ce-N(2)	0.2669(3)						
angle	(°)	angle	(°)	angle	(°)		
O(3)-Ce-O(4)#1	136.90(9)	0(6) - Ce - O(2)	160. 19(9)	O(2)#1-Ce-N(3)	80.14(8)		
O(3)-Ce- $O(2)$ #1	71.12(9)	O(5)-Ce- $O(2)$	135.85(8)	0(1)-Ce-N(3)	153.01(9)		
O(4)#1-Ce-O(2)#1	78.57(8)	O(3)-Ce-N(1)	77.98(9)	O(6)-Ce-N(3)	25.02(8)		
O(3)-Ce- $O(1)$	90. 24(10)	O(4)#1-Ce-N(1)	136.58(9)	O(5)-Ce-N(3)	24.19(9)		
O(4)#1-Ce- $O(1)$	83.52(9)	O(2)#1-Ce-N(1)	144.84(8)	O(2)-Ce-N(3)	155.06(8)		
O(2)#1-Ce-O(1)	126.20(9)	O(1)-Ce-N(1)	69.04(9)	N(1)-Ce-N(3)	92.85(9)		
O(3)-Ce- $O(6)$	87.55(9)	O(6)-Ce-N(1)	72.20(9)	N(2)-Ce-N(3)	73.04(9)		
O(4)#1-Ce-O(6)	122.81(9)	O(5)-Ce-N(1)	112.00(9)	C(11)-Ce-N(3)	169. 47(9)		
O(2)#1-Ce-O(6)	89.83(9)	O(2)-Ce-N(1)	111.30(8)	O(3)-Ce-Ce#1	68.07(6)		
O(1)-Ce- $O(6)$	140.77(9)	O(3)-Ce-N(2)	138. 39(9)	O(4)#1-Ce-Ce#1	68.98(6)		
O(3)-Ce- $O(5)$	122.88(9)	O(4)#1-Ce-N(2)	82.56(9)	O(2)#1-Ce-Ce#1	40.07(6)		
O(4)#1-Ce- $O(5)$	74.02(9)	O(2)#1-Ce-N(2)	144.49(9)	O(1)-Ce-Ce#1	86.16(7)		
O(2)#1-Ce-O(5)	73.34(9)	O(1)-Ce-N(2)	80.52(10)	0(6)-Ce-Ce#1	128.40(7)		
O(1)-Ce- $O(5)$	146.77(10)	O(6)-Ce-N(2)	75.55(10)	O(5)-Ce-Ce#1	107.46(6)		
O(6)-Ce- $O(5)$	49.20(8)	O(5)-Ce-N(2)	72.66(9)	O(2)-Ce-Ce#1	36.40(5)		
O(3)-Ce- $O(2)$	74. 59(8)	O(2)-Ce-N(2)	123.68(9)	N(1)-Ce-Ce#1	137.69(6)		
O(4)#1-Ce- $O(2)$	68.96(8)	N(1)-Ce-N(2)	60.77(9)	N(2)-Ce-Ce#1	149.77(7)		
O(2)#1-Ce- $O(2)$	76.47(8)	O(3)-Ce-N(3)	105.87(9)	C(11)-Ce-Ce#1	62.06(7)		
0(1)-Ce-O(2)	49.78(8)	O(4)#1-Ce-N(3)	98.09(9)	N(3)-Ce-Ce#1	119.73(6)		

· 1032 ·

图 1 配合物分子结构 Fig. 1 Molecular structure of complex [Ce(CH₂ = C(CH₃)COO)₂(NO₃)(Bipy)]₂

图 2 配合物的晶胞堆积图 Fig. 2 Molecular packing arrangement in the unit cell

nm。Ce-N(Bipy)键长平均值为 0.2667(3) nm; Ce-O (NO₃⁻) 键长平均值为 0.2586(3) nm, NO₃⁻ 中 N(3) -O(5)、N(3)-O(6)、N(3)-O(7)键长分别为 0.1248 (4) nm、0.1288(4) nm 和 0.1211(4) nm, 前二者介于 N-O 单键和 N = O 双键之间, 而 N(3)-O(7)键则呈双

无机化学学报

第 19 卷

键性质。与我们以前合成的配合物 [Ce(CH₂ = C (CH₃) COO)₂(NO₃)(Phen)]₂^[6] 和 [Ce(C₆H₅COO)₂ (NO₃)(Bipy)]₂^[8]及文献报道的配合物 [Er(β -C₆H₅ CHCHCOO)₃]^[5]中各配体的配位情况基本相似。

参考文献

- [1] MA Lu-Fang(马录芳)、LIANG Fu-Pei(梁福沛)、TAN Hai-Cuo(覃海错) et al Wuji Huaxue Xuebao(Chinese Journal of Inorganic Chemical), 2002, 18(2), 205.
- [2] ZHU Long-Guan (朱龙观), Susumu Kitagawa Gaodeng Xuexiao Huaxue Xuebao (Chemical Journal of Chinese University), 2001, 22(2), 188.
- [3] XIAN Chun-Ying(咸春颖), ZHU Long-Guan(朱龙观), YU Qing-Sen(俞庆森) Wuji Huaxue Xuebao(Chinese Journal of Inorganic Chemical), 1999, 15(6), 813.
- [4] LU Wei-Min(陆维敏), SHAO Zong-Ping(邵宗平), CHEN Wei-Guo(陈伟国) et al Hangzhou Daxue Xuebao(Journal of Hangzhou University, Natural Science), 1996, 24(3), 251.
- [5] LU Wei-Min(陆维敏), CHEN Wei-Guo(陈伟国), LUO Xiao-Yang(罗晓阳) et al Gaodeng Xuexiao Huaxue Xuebao (Chemical Journal of Chinese University), 1997, 18(3), 337.
- [6] ZHAO Shu-Hui(赵曙辉), XIAN Chun-Ying(咸春颖) Wuji Huaxue Xuebao(Chinese Journal of Inorganic Chemical),
 2002, 18(6), 639.
- [7] Curtis N. F., Curtis P. H. Inorg. Chem., 1965, 4, 804.
- [8] XIAN Chun-Ying(咸春颖), ZHU Long-Guan(朱龙观), YU Qing-Sen(俞庆森) Jiegou Huaxue(Chinese Journal of Structure Chemistry), 1999, 18(6), 428.

Synthesis and Crystal Structure of the Complex $[Ce(CH_2 = C(CH_3)COO)_2(NO_3)(Bipy)]_2$

XIAN Chun-Ying* LIN Miao

(College of Chemistry and Chemical Engineering, Donghua University, Shanghai 200051)

The new complex $[Ce(CH_2 = C(CH_3) COO)_2(NO_3) (Phen)]_2$ was prepared in ethanol-aqueous solution with 8-hydroxyquinoline as the acidity regulator. Its crystal structure was determined by X-ray diffraction analysis. The title complex is triclinic, space group P1, a = 1.00832(3) nm, b = 1.02858(8) nm, c = 1.12350(8) nm, $\alpha = 113.9250(10)^\circ$, $\beta = 103.8210(10)^\circ$, $\gamma = 81.4650(10)^\circ$, V = 1.03252(14) nm³, Z = 1, $D_c = 1.700g \cdot cm^{-3}$, F(000) = 522. The coordination number of Ce³⁺ is nine. CCDC: 211278.

Keywords: complex synthesis crystal structure