第11期 2003年11月 Vol. 19, No. 11 Nov., 2003

研究简报

三邻氯苄基和三邻氟苄基锡吡咯烷氨荒酸酯的合成及晶体结构

尹汉东* 王传华 马春林 (聊城大学化学化工学院,聊城 252059)

关键词:	三邻氯(氟)苄基银	易	吡咯烷氨荒酸酯	合成	晶体结构
分类号:	0614. 43+2	0613.4			

自从 Brown^[1]发现三苯基锡乙酸酯具有抗癌活 性以来,该领域的研究引起了人们的极大关注,迄今 为止已相继报道了许多具有较强生物活性的烃基锡 羧酸酯、膦酸酯、二硫代磷酸酯^[2-5]的合成和结构研 究。近年来、我们合成了一系列具有较强的抗癌活 性烃基锡的氨荒酸衍生物^[6~8], 但卤代烃基锡氨荒 酸衍生物的合成、结构和生物活性研究尚未见文献 报道。Crowe 等^[9]认为,有机锡配合物的抗癌活性可 能取决于在形成 Sn-DNA 之前配合物水解释放出 R_aSn²⁺的能力,而这种能力又与烃基的结构类型、烃 基的空间和电子效应、配体和锡原子的成键方式以 及键长有关。为进一步探讨含卤原子烃基锡氨荒酸 衍生物的生物活性以及卤原子对成键方式和结构类 型的影响。我们合成了新型的含卤原子有机锡配合 物三邻氯苄基锡吡咯烷氨荒酸酯和三邻氟苄基锡吡 咯烷氨荒酸酯。通过元素分析、红外光谱和核磁共 振氢谱对其进行了表征。并利用 X-射线单晶衍射测 定了它们的晶体结构。

1 实验部分

1.1 仪器和试剂

XT-4 型显微熔点仪(温度计未经校正), PE-2400 II 型元素分析仪(锡含量采用重量分析法 测定), Nicolet-460 型红外光谱仪(KBr 压片), Mercury Plus-400 型核磁共振仪(TMS 为内标, CDCl₃ 为 溶剂), Bruker Smart-1000 CCD X- 射线衍射仪。

吡咯烷氨荒酸钠按文献[10]合成。其他试剂均为

分析纯,溶剂 CH2Cl2 经干燥处理后使用。

1.2 配合物的合成

1.2.1 三邻氯苄基锡吡咯烷氨荒酸酯的合成

在 Schlenk 管中加入 1. 2mmol 吡咯烷氨荒酸 钠, 1. 0mmol 三邻氯苄基氯化锡和 20mL CH₂Cl₂, 30℃下搅拌 10h, 过滤, 滤液减压浓缩至 3~5mL, 加 人适量乙醚或石油醚, 低温静置, 析出白色固体, 粗 产品经二氯甲烷 - 乙醚重结晶得 0. 56g 无色晶体, 产率 87%, m. p. 123~125℃。¹H NMR(CDCl₃, 400MHz) δ: 6. 69~7. 28(12H, m, ArH), 3. 66(4H, t, J = 11.4Hz, NCH₂), 2. 78(6H, t, $J_{5m-H} = 68.6$ Hz, ArCH₂Sn), 1. 56(4H, t, J = 11.4Hz, CH₂CH₂); IR (KBr) ν : 3048(w, Ph-H), 2988, 2872(m, C-H), 1478 (s, C-N), 1153, 1007(s, CS2), 554(m, Sn-C), 448(s, Sn-S) cm⁻¹; 元素分析: 按 C₂₆H₂₆Cl₃NS₂Sn 的计算值 (%): C 48. 67, H 4. 08, N 2. 18, S 9. 99, Sn 18. 50; 实 验值(%): C 48. 91, H 4. 15, N 2. 16, S 9. 79, Sn 18. 74。

1.2.2 三邻氟苄基锡吡咯烷氨荒酸酯的合成

在 Schlenk 管中加入 1. 2mmol 吡咯烷氨荒酸 钠, 1. 0mmol 三邻氟苄基氯化锡和 20mL CH₂Cl₂, 30℃下搅拌 10h, 过滤, 滤液减压浓缩至 3~5mL, 加 人适量石油醚, 低温静置, 析出白色固体, 粗产品经 二氯甲烷 - 乙醚重结晶得 0. 48g 无色晶体, 产率 81%, m. p. 136~137℃。[']H NMR(CDCl₃, 400MHz) δ : 6. 94~7. 02(12H, m, ArH), 3. 90(4H, t, *J* = 11. 3 Hz, NCH₂), 2. 59(6H, t, *J*_{Sn-H} = 65. 4Hz, ArCH₂Sn),

收稿日期: 2003-05-16。收修改稿日期: 2003-07-15。

国家自然科学基金资助项目(No. 20271025),教育部骨干教师基金和山东省自然科学基金资助课题(No. Z2001B02)。

^{*} 通讯联系人。 E-mail: handongyin@ sohu. com

第一作者: 尹汉东, 男, 46岁, 教授; 研究方向: 金属有机化学。

1.57(4H, t, J = 11.1Hz, CH₂CH₂); IR(KBr) ν: 3061 (w, Ph-H), 2987, 2866(m, C-H), 1492(s, C-N), 1148, 1014(s, CS2), 548(m, Sn-C), 451(s, Sn-S) cm⁻¹; 元素分析: 按 C₂₆H₂₆F₃NS₂Sn 的计算值(%): C 52.72, H 4.42, N 2.36, S 10.83, Sn 20.04; 实验值 (%): C 52.99, H 4.50, N 2.38, S 10.95, Sn 20.06。

1.3 配合物1和2的晶体测定

取配合物1的0.40mm×0.35mm×0.30mm 无色晶体置于Bruker Smart 1000 CCD型X-射线 单晶衍射仪上,用石墨单色化的MoKa辐射(λ = 0.071073nm),在室温(298±2K)下,以 $\omega/2\theta$ 扫描 方式,在2.07° $\leq \theta \leq 26.37$ °范围内收集7938强 反射数据。其中独立衍射点5416个(R_{int} =0.0170), 可观察衍射点4472个($I > 2\sigma(I)$)。晶体结构由直 接法解出,非氢原子的坐标是在以后的数轮差值 Fourier 合成中陆续确定的,对全部非氢原子的坐标 及各向异性温度因子用SHELX-97程序以最小二乘 法对结构进行精修。最终一致性因子为 R_1 = 0.0282, wR_2 = 0.0617。CCDC: 213679。

取配合物 2 的 0.30mm×0.19mm×0.11mm 无 色晶体, 放置在 Bruker Smart 1000 CCD 型 X-射线单 晶衍射仪上, 用石墨单色化的 Mo Ka 辐射 (λ = 0.071073nm), 在 2.22° $\leq \theta \leq$ 25.04°范围内, 以 $\omega/2\theta$ 扫描方式, 在室温 (298 ± 2K)下共收集 5936 强反射数据。其中独立衍射点 4168 个 (R_{int} = 0.0828),可观察衍射点 1583 个($I > 2\sigma(I)$)。晶体 结构由直接法解出, 非氢原子的坐标是在以后的数 轮差值 Fourier 合成中陆续确定的, 对全部非氢原子 的坐标及各向异性参数用 SHELX-97 程序以最小二 乘法对 F^2 进行精修。最终一致性因子为 R_1 = 0.0467, wR_2 = 0.0788。CCDC: 213680。

2 结果与讨论

2.1 配合物1和2的红外光谱

配合物 1 和 2 的碳硫键的不对称伸缩振动 ($\nu_{e_n}^{u_n}$)和对称伸缩振动 ($\nu_{e_n}^{u_n}$)吸收分别出现在 1153 em⁻¹, 1148em⁻¹和 1007cm⁻¹, 1014cm⁻¹, 其 $\Delta \nu$ ($\nu_{e_n}^{u_n}$ - $\nu_{e_n}^{u_n}$)值分别为 146cm⁻¹和 134cm⁻¹, 与配合物 R₂NCS₂R^[11]相比,其 $\Delta \nu$ 明显减小,说明配合物中碳 硫双键和碳硫单键发生了一定程度的平均化,即碳 硫双键的硫原子也与锡原子发生了配位作用,由此 可以推断,配合物中吡咯烷氨荒酸基应是以双齿形 式与锡原子配位。但与相应原料吡咯烷氨荒酸盐相 比^[12],其 Δν 值明显增大,这说明配合物中吡咯烷氨 荒酸基是以非均性的双齿形式与锡原子配位^[13],生 成了五配位的有机锡配合物,该结果与 X-射线单晶 衍射测试结果是一致的。

2.2 核磁共振氢谱

¹H NMR 的化学位移表明, 配合物 1 和 2 芳环上 的质子在 6.69~7.28 间呈现多重峰; 吡咯烷氨荒酸 基中与氮原子相连的亚甲基上的质子分别在 3.66 和 3.90 处有吸收; 与锡原子相连的邻氯和邻氟苄基 的亚甲基氢 δ H 分别为 2.78 和 2.59, 均由一个正 常的单峰和一对小卫星峰组成, 这是由于 ¹¹⁹Sn-H 偶 合的结果, 其偶合常数分别为 68.6Hz 和 65.4Hz。

2.3 配合物的晶体结构

晶体结构分析表明,配合物 1 为三斜晶系,空间 群 $P\bar{1}$, a = 0.9076(4) nm, b = 1.0663(5) nm, c =1.5193(7) nm, $\alpha = 75.811(6)^\circ$, $\beta = 89.344(6)^\circ$, $\gamma =$ 72.665(6)°, Z = 2, V = 1.3577(11) nm³, $D_c = 1.569$ g · cm⁻³, $\mu = 1.406$ mm⁻¹, $F(000) = 644_\circ$ 配合物 2 为单斜晶系,空间群 $P2_1/c$, a = 1.355(2) nm, b =1.0143(16) nm, c = 1.986(3) nm, $\beta = 109.94(2)^\circ$, Z = 4, V = 2.565(7) nm³, $D_c = 1.539$ g · cm⁻³, $\mu =$ 1.195 mm⁻¹, $F(000) = 1200_\circ$ 配合物 1 的晶体结构见 图 1,分子在晶胞中的排列见图 2; 配合物 2 的晶体 结构见图 3,分子在晶胞中的排列见图 4。配合物 1 和 2 的部分键长和键角分别列于表 1 和表 2。

配合物1和2均为单体结构,中心锡原子为 畸变的三角双锥构型。在配合物1锡原子的配位 圈内,锡原子与3个邻氯苄基的亚甲基碳原子间

· 1229 ·

图2 配合物1的晶胞图

Fig. 2 Projection of the unit cell of compound 1

图 3 配合物 2 的分子结构图

Fig. 3 Molecular structure of compound 2

的距离分别为: Sn(1)-C(6) 0.2191(3) nm, Sn(1)-C (13) 0.2166(3) nm 和 Sn(1)-C(20) 0.2164(3) nm,

图 4 配合物 2 的晶胞图 Fig. 4 Projection of the unit cell of compound 2

比配合物 2 的 Sn-C 键 [Sn(1)-C(6) 0.2161(8) nm, Sn(1)-C(13) 0.2182(8) nm, Sn(1)-C(20) 0.2153 (9) nm] 略长, 这可能与吡咯烷氨荒酸配体和锡原子 配位后,配合物1苄基上的邻位氯原子比配合物2 的氟原子具有更大的空间排斥作用有关。配合物1 和 2 中 Sn(1) 与 S(1) 之间的距离分别为 0. 2466(4) nm 和 0.2460(4) nm, 比配合物三苄基锡吗啉氨荒酸 酯^[14]和三苄基锡哌啶氨荒酸酯^[15]的 Sn(1)-S(1)键 [0.2487(2) nm 和 0.2481(6) nm] 略短, 这可能主要 是苄基上的氯(氟)原子的具有较强的吸电效应的缘 故。配合物1和2的Sn(1)-S(2)分别为0.3079(8) nm 和 0.3035(4) nm, 配合物 1 的 Sn(1)-S(2)键稍 长,与配合物三苄基锡吗啉氨荒酸酯^[14]和三苄基锡 哌啶氨荒酸酯^[15]的 Sn(1) -S(2) 键的键长 [0.3053 (1) nm 和 0.3027(6) nm] 接近, 明显短于配合物 Me₃SnS₂CNMe₂^[16]的 Sn(1)-S(2) (0.316nm). 但其值 远小于这两种原子的范德华半径之和 (0.4nm), 说 明在配合物1和2中, 吡咯烷氨荒酸基是以非均性

	Table 1 Sele	cted Bond Distances(n	m) and Angles(°)	of Complex 1	
Sn(1)-C(20)	0.2164(3)	Cl(2)-C(15)	0.1744(3)	N(1)-C(5)	0.1475(4)
Sn(1)-C(13)	0.2166(3)	Cl(3)-C(22)	0.1748(3)	C(2)-C(3)	0.1510(4)
Sn(1)-C(6)	0.2191(3)	S(1)-C(1)	0.1752(3)	C(7)-C(8)	0.1379(4)
Sn(1)-S(1)	0.2466(4)	S(2)-C(1)	0.1683(3)	C(6)-C(7)	0.1485(4)
Sn(1)-S(2)	0.3079(8)	N(1)-C(1)	0.1327(3)		
Cl(1)-C(8)	0.1740(4)	N(1)-C(2)	0.1464(4)		
C(20)-Sn(1)-C(13)	116.8(1)	C(13)-Sn(1)-S(2)	80.3(3)	N(1)-C(1)-S(1)	116.0(2)
C(20)-Sn(1)-C(6)	109.9(8)	C(7)-C(6)-Sn(1)	115.1(8)	C(1)-S(1)-Sn(1)	96. 6(9)
C(13)-Sn(1)-C(6)	107.7(5)	C(7)-C(8)-Cl(1)	119. 5(3)	C(1)-S(2)-Sn(1)	77.9(9)
C(20)-Sn(1)-S(1)	108.0(1)	C(6)-Sn(1)-S(2)	156.8(9)	C(14)-C(13)-Sn(1)	112.4(2)
C(13)-Sn(1)-S(1)	118.1(8)	S(1)-Sn(1)-S(2)	64.1(3)	C(21)-C(20)-Sn(1)	115.1(3)
C(6)-Sn(1)-S(1)	93.4(6)	S(2)-C(1)-S(1)	121.0(1)	N(1)-C(2)-C(3)	103.5(3)
C(20)-Sn(1)-S(2)	83.8(5)	N(1)-C(1)-S(2)	123.0(2)		

表 1 配合物 1 的主要键长和键角 1 Selected Bond Distances(nm) and Angles(°) of Com

第19卷

表 2 配合物 2 的主要键长和键角 Table 2 Selected Bond Distances(nm) and Angles(°) of Complex 2					
Sn(1)-C(13)	0.2182(8)	C(7)-C(8)	0.1464(11)	N(1)-C(5)	0.1424(10)
Sn(1)-C(20)	0.2153(9)	F(3)-C(22)	0.1363(11)	C(2)-C(3)	0.1480(13)
Sn(1)-S(1)	0.2460(4)	S(1)-C(1)	0.1749(10)	C(7)-C(8)	0.1356(12)
Sn(1)-S(2)	0.3035(4)	S(2)-C(1)	0.1683(9)		
F(1)-C(8)	0.1331(12)	N(1)-C(1)	0.1318(10)		
C(20)-Sn(1)-C(13)	105.7(3)	C(13)-Sn(1)-S(2)	158.3(3)	N(1)-C(1)-S(1)	116.7(7)
C(20)-Sn(1)-C(6)	119.7(4))	C(7)-C(6)-Sn(1)	114.8(6)	C(1)-S(1)-Sn(1)	96.8(3)
C(13)-Sn(1)-C(6)	106.8(4)	C(9)-C(8)-F(1)	114.8(12)	C(1)-S(2)-Sn(1)	79.2(4)
C(20)-Sn(1)-S(1)	114.2(3)	C(6)-Sn(1)-S(2)	85.6(3)	C(14)-C(13)-Sn(1)	113.5(5)
C(13)-Sn(1)-S(1)	94.1(3)	S(1)-Sn(1)-S(2)	64.3(7)	$C(21)-C(20)-S_n(1)$	114.3(6)
C(6)-Sn(1)-S(1)	112.4(3)	S(2)-C(1)-S(1)	119.6(5)	N(1)-C(2)-C(3)	102. 4(9)
C(20)-Sn(1)-S(2)	82.1(3)	N(1)-C(1)-S(2)	123.7(8)		

的双齿形式与锡原子键合, 生成五配位的有机锡配 合物。此外, 在配合物 1 和 2 的 CS₂ 基团中, 较短的 C-S 键[S(2)-C(1)均为 0. 1683nm]和较长的 Sn-S 键 [Sn(1)-S(2) 0. 3079(8) nm, 0. 3035(4) nm] 相对应, 这说明 S(2)-C(1)是以双键形式存在。

在配合物1中, 锡原子周围的配位环境是: S (1)、C(20)、C(13)处于赤道位置、而S(2)和C(6)处 于轴向位置,形成了三角双锥结构,由于吡咯烷氨荒 酸配体是以双齿形式与锡原子配位, 使得分别处于 三角双锥轴向位置和赤道位置的两个硫原子之间的 夹角 [S(1)-Sn(1)-S(2)] 仅为 64.1(3)°, 与 90°有较 大偏离,从而导致硫原子不可能处于标准三角双锥 的顶点位置, 而 C(6) -Sn(1) -S(2) 的键角也仅为 156.8(9)°而不是180°。并且处于赤道位置上的苄基 的两个亚甲基碳原子以及硫原子之间的三个夹角 $[C(20) - Sn(1) - C(13) + 16.8(1)^{\circ}, C(13) - Sn(1) - S(1)]$ 118.1(8)°, C(20) -Sn(1) -S(1) 108.0(1)°] 之和为 342.9°, 与预期的 360°的偏离了 17.1°, 说明 C(20), C(13),S(1)和 Sn(1)没有处于一个平面上。此外,处 于三角双锥轴向位置的 C(6) 原子与处于赤道位置 的两个苄基的亚甲基碳原子以及硫原子之间的夹角 分别为: C(20)-Sn(1)-C(6)109.9(8)°, C(13)-Sn(1) -C(6)107.7(5)°,C(6)-Sn(1)-S(1)93.4(6)°,所有键 角均大于 90°, 而处于三角双锥轴向位置的 S(2) 原 子与处于赤道位置的两个苄基的亚甲基碳原子以及 硫原子之间的夹角则均明显小于 90° [C(20) - Sn(1) $-S(2) 83.8(5)^{\circ}, C(13) -Sn(1) -S(2) 80.3(3)^{\circ}, S(1)$ -Sn(1)-S(2)64.1(3)°],由此可见,该配合物中锡原 子为严重畸变的三角双锥构型。配合物2锡原子的

配位几何构型与配合物1中锡原子的构型类似,也 是畸变的三角双锥构型,但其畸变程度略小于配合 物1,这可能与苄基上的邻位氟原子比氯原子具有 较小的空间作用有关。

参考文献

- Brown N. M. Tin-based Antitumour Drugs, Springer-verlag: Berlin, 1990, p69.
- [2] Gielen M., Boualam M., Mahieu B., Tiekink E. B. Appl. Organomet. Chem., 1994, 8, 19.
- [3] YIN Han-Dong(尹汉东), ZHANG Ru-Fen(张如芬), MA Cun-Lin(马春林) Yingyong Huaxue(Chin. Appl. Chem.), 1998, 15(6), 53.
- [4] YIN Han-Dong(尹汉东), ZHANG Ru-Fen(张如芬), MA Cun-Lin(马春林) Youji Huaxue(Chin. J. Org. Chem.), 2000, 20, 108.
- [5] XIE Qing-Lan(谢庆兰), ZHU Ying-Huai(朱应怀), YANG Zhi-Qiang(杨志强) Hecheng Huaxue(Chin. J. Syn. Chem.), 1996, 4, 233.
- [6] YIN Han-Dong(尹汉东), ZHANG Ru-Fen(张如芬), MA Cun-Lin(马春林) Youji Huaxue(Chin. J. Org. Chem.), 1999, 19, 413.
- [7] YIN Han-Dong(尹汉东), WANG Chuan-Hua(王传华), ZHANG Ru-Fen(张如芬), MA Cun-Lin(马春林) Wuji Huaxue Xuebao(Chin. J. Inorg. Chem.), 2000, 16, 619.
- [8] YIN Han-Dong(尹汉东), MA Cun-Lin(马春林) Yingyong Huaxue(Chin. Appl. Chem.), 2000, 17, 375.
- [9] Crowe A. J., Smith P. J., Atassi G. Inorg. Chim. Acta, 1984, 93, 179.
- [10] Nair G. G. R., Rao V. R. S., Murthy A. R. V. Mikrochim.

第11期

Acta, 1961, 741.

- [11] Bonozi F. J. Organomet. Chem., 1967, 9, 95.
- [12]YIN Han-Dong(尹汉东), ZHANG Ru-Fen(张如芬), MA Cun-Lin(马春林) Liaocheng Shiyuan Xuebao(J. Liaocheng Teachers University, Natural Science), 1999, 12, 38.
- [13]YIN Han-Dong(尹汉东), WANG Yong(王 勇), ZHANG Ru-Fen(张如芬), MA Cun-Lin(马春林) Gaodeng Xuexiao Huaxue Xuebao(Chem. J. Chin. Univ.), 2000, 21, 1231.

[14]YIN Han-Dong(尹汉东), WANG Chuan-Hua(王传华),

WANG Yong(王 勇), MA Cun-Lin(马春林), ZHANG Ru-Fen(张如芬) Wuji Huaxue Xuebao(Chin. J. Inorg. Chem.), 2002, 18, 347.

- [15]YIN Han-Dong(尹汉东), WANG Chuan-Hua(王传华), WANG Yong(王 勇), MA Cun-Lin(马春林), ZHANG Ru-Fen(张如芬) Youji Huaxue(Chin. J. Org. Chem.), 2002, 22, 183.
- [16]Sheldrick G. M., Sheldrick W. S. J. Chem. Soc. Sec., A, 1970, 490.

Synthesis and Crystal Structure of Tri(*o*-chlorbenzyl)tin Dithiotetrahydropyrrolocarbamate and Tri(*o*-fluorbenzyl)tin Dithiotetrahydropyrrolocarbamate

YIN Han-Don^{*} WANG Chuan-Hua MA Chun-Lin (Department of Chemistry, Liaocheng University, Liaocheng 252059)

Tri(o-chlorbenzyl) tin dithiotetrahydropyrrolocarbamate 1 and tri(o-fluorbenzyl) tin dithiotetrahydropyrrolocarbamate 2 were synthesized. Their structures were characterized by elementary analysis, IR and ¹H NMR and the crystal structures were determined by X-ray single crystal diffraction. The crystal 1 belongs to triclinic with space group $P\overline{1}$, a = 0.9076(4) nm, b = 1.0663(5) nm, c = 1.5193(7) nm, $\alpha = 75.811(6)^{\circ}$, $\beta = 89.344(6)^{\circ}$, $\gamma =$ 72.665(6)°, Z = 2, V = 1.3577(11) nm³, $D_c = 1.569g \cdot \text{cm}^{-3}$, $\mu = 1.406\text{mm}^{-1}$, F(000) = 644, R = 0.0282, wR = 0.0617. The crystal 2 belongs to monoclinic with space group $P2_1/c$, a = 1.355(2) nm, b = 1.0143(16)nm, c = 1.986(3) nm, $\beta = 109.94(2)^{\circ}$, Z = 4, V = 2.565(7) nm³, $D_c = 1.539g \cdot \text{cm}^{-3}$, $\mu = 1.195\text{mm}^{-1}$, F(000) = 1200, R = 0.0467, wR = 0.0788. In the crystals of 1 and 2, the structures consist of discrete molecules containing five-coordinate tin atom in a distorted trigonal bipyramidal configuration. CCDC: 1, 213679; 2, 213680.

Keywords:	tri(o-chlorbenzyl)ti		tri(o-fluorbenzyl)tin	dithiotetrahydropyrrolocarbamate
	synthesis	crystal str	ucture	