Vol. 19, No. 12 Dec., 2003

第 12 期 2003 年 12 月

氧化硅对金红石相纳米 TiO2 微结构的影响

姚 超*,1,2 吴凤芹 2 林西平 2 汪 信 1 (1南京理工大学化工学院、南京 210094) (2 江苏工业学院化工系、常州 213016)

通过硅酸钠水解生成的无定形氧化硅对金红石相纳米 TiO2 进行修饰、利用红外光谱、紫外 - 可见漫反射光谱、X 射线衍 射、透射电镜和比表面仪对纳米 TiO2 进行了表征。结果表明, 氧化硅沉积在纳米 TiO2 的表面和颗粒之间形成一个空间网络体 系, 有效地抑制了 TiO₂ 晶粒尺寸和原始粒径的长大。当热处理温度低于 700 ℃时, 经氧化硅处理的纳米 TiO₂ 的晶粒尺寸、原始 粒径和比表面积几乎不变; 当热处理温度高于 700 $^{\circ}$ C 时, 经氧化硅处理的纳米 $^{\circ}$ TiO₂ 的晶粒尺寸和原始粒径开始缓慢变大, 比表 面积快速下降, 在 900 ℃下煅烧 2 h, 经氧化硅处理的纳米 TiO₂ 原始粒径仍为 20~40 nm。氧化硅的存在使纳米 TiO₂ 吸收紫外 线的能力增强并使其平均孔径变小。

关键词: 纳米 TiO2 金红石 晶粒尺寸 原始粒径 微结构 比表面积 孔径

分类号: 0614.41*1 **TB383**

纳米 TiO₂ 作为一种理想的光催化材料, 在净化 空气、水处理、抗菌、除臭等领域有广泛的运 用[1-4]。一般认为锐态矿相 TiO2 具有更高的光催化 活性[5,6], 但最近的研究表明, 金红石相纳米 TiO2 同 样具有极强的光催化活性^[7,8]。纳米 TiO₂ 的晶粒尺 寸、结晶度和表面羟基含量是影响其光催化活性的 重要因素。为改善纳米 TiO2 的结晶度和微结构, 热 处理是一种简单而有效的方法。但高温煅烧常造成 纳米 TiO2 晶粒尺寸、原始粒径的快速长大、甚至造 成纳米 TiO2 粒子间的烧结。本文首先低温合成出金 红石相纳米 TiO₂,然后利用无定形的氧化硅对纳米 TiO₂ 进行表面处理、研究了氧化硅的存在对纳米 TiO₂ 光学性质和微结构的影响。

实验部分 1

1.1 试剂

四氯化钛 (工业级,天津化工厂),碳酸钠 (A. R.), 浓盐酸 (A. R.), 浓氨水 (A. R.), 硅酸钠 (A. R.)_o

1.2 金红石相纳米 TiO₂ 的制备和表面处理 在 30 ℃下,向 1 mol·L-1 的碳酸钠水溶液中 滴加 2 mol·L-1 的四氯化钛水溶液, 到 pH = 8.0 时 停止滴加、反应生成非晶状 TiO2 水合物、将 TiO2 水 合物过滤,洗涤。用 0.8 mol·L-1 的稀盐酸 100 mL 对 30 g 滤饼在 85 ℃下恒温晶化 6 h、制得金红石 相纳米 TiO2 透明溶胶。维持 pH = 1.5, 反应温度 85 ℃、向纳米 TiO₂ 溶胶中并流滴加 1 mol·L⁻¹ 的 硅酸钠水溶液和 1 mol·L-1 的稀硫酸水溶液, 硅酸 钠的加入量取 $m(Na_2SiO_3 \cdot 9H_2O) : m(TiO_2) = 1:2$, m(Na₂SiO₃·9H₂O): m(TiO₂)的选择主要考虑产品 的分散性和耐光性, 关于 m(Na₂SiO₃ · 9H₂O): m(TiO₂)的影响另有专文论述。硅酸钠水溶液滴完 后继续搅拌 0.5 h, 用 2.0 mol·L-1 的稀氨水中和至 pH = 7.0, 过滤, 用去离子水洗涤除去可溶性盐, 再 用无水乙醇充分置换滤饼中的水分,然后在 100 ℃ 下干燥 10 h, 得到经氧化硅表面处理的纳米 TiO2 粉 体。

1.3 分析表征

红外光谱由美国 Nicolet460 型傅立叶红外光谱 仪表征, 纳米 TiO2 的晶型用 D/Max-RA 型旋转阳极 X 射线衍射仪(日本 Rigaku 公司)测定, 晶粒尺寸由 Scherrer 公式计算。颗粒的原始粒径和形貌由H-800

收稿日期: 2003-07-10。收修改稿日期: 2003-09-26。

江苏省"九五"科技攻关资助项目(No. BG98010-1)。

*通讯联系人。E-mail: yc518@263. net

第一作者: 姚 超, 男, 35 岁, 博士研究生; 研究方向: 纳米材料的制备及表面处理。

透射电子显微镜(日本 Hitachi 公司)观察。比表面积在 ASAP2010MC 氮吸附仪上 (美国 Micromeritics 公司)测试。紫外漫反射光谱(UV-DRS)是用 Carry500紫外/可见/近红外分光光度计 (美国 Vraian 公司)测定。

2 结果与讨论

2.1 红外光谱分析

图 1 为纳米 TiO₂ 的红外光谱、其中 a~d 为经 氧化硅处理的纳米 TiO2, e 为纯纳米 TiO2。硅酸钠酸 化时, 生成正硅酸 (Si(OH) 4), 单体形式的 Si(OH) 4 具有很强的反应活性。有的研究者认为, 正硅酸与 TiO₂ 表面的 Ti-OH 反应, 形成 Ti-O-Si 键 [9]。Ti-O-Si 键对应的吸收峰在 950 cm-1 处[10]。图 1 的红外谱图 中并未发现 Ti-O-Si 键的振动吸收峰, 一方面是形成 的 Ti-O-Si 键少, 另一种可能是 Si(OH)4 首先自身缩 聚形成氧化硅、然后沉积在纳米 TiO2 粒子的表面。 从图 1 还可以看出, 经氧化硅处理后, 纳米 TiO2 在 3400 cm⁻¹ 和 1633.4 cm⁻¹ 的 -OH 吸收峰明显增强, 这是由于 SiO₂ 比 TiO₂ 具有更强的亲水性。200 ℃ 时、经氧化硅修饰的纳米 TiO2 在 1000 cm-1 附近出 现分裂峰, 1009. 2 cm-1 和 962 cm-1 分别为 Si-O 和 Si-OH 的吸收峰。随着煅烧温度的升高,两峰合并为 一个峰、因为纳米 TiO2 表面的 Si-OH 在高温下相互 缩聚脱水转化成 Si-O 键。对照无定形氧化硅的红外 谱图, 发现 Si-O 的吸收峰发生了红移, 原因有待进 一步研究。当煅烧温度达到 900 ℃时, 1400 ~ 2100

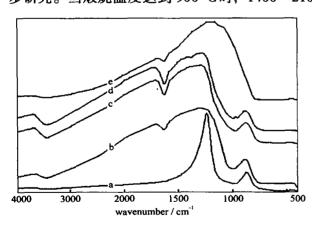


图 1 纳米 TiO₂ 的红外光谱

Fig. 1 Infrared spectra of the nanosized TiO₂ powder
a: 900 °C for 2 h; b: 800 °C for 2 h; c: 500 °C
for 2 h; d: 200 °C for 2 h; e: 200 °C for 2 h
(pure TiO₂ powder)

cm⁻¹ 的透过率急剧下降, 说明 900 ℃时 TiO₂ 粉体的 微结构发生了大的变化,由于高温造成微结构的坍塌 (见 TEM 分析),粒子间聚结紧密,对红外光散射能力增加,造成了透光率下降。

2.2 紫外-可见漫反射光谱

金红石相 TiO₂ 是一种 n 型半导体, 其禁带宽度 E_8 = 3.0 eV。由图 2 可以看出, 900 ℃煅烧 2 h 后, 纯 TiO₂ 的吸收边界约 410 nm, 对应的禁带宽度 E_8 = 3.03 eV,表明纯纳米 TiO₂ 的粒子较大与普通钛白的粒径相近; 经氧化硅处理的纳米 TiO₂ 在 900 ℃煅烧 2 h 后的吸收光边界约为 400 nm, 对应的禁带宽度 E_8 = 3.11 eV,经氧化硅处理的纳米 TiO₂ 在 500℃ 煅烧 2 h 后的吸收光边界约为 395 nm, 吸收边界比纯 TiO₂ 蓝移 15 nm 左右, 对应的禁带宽度 E_8 = 3.15 eV。由于已被电子占据分子轨道能级之间的宽度(能隙)随颗粒直径减小而增大,这说明经氧化硅处理的纳米 TiO₂ 粒子更小,具有明显的尺寸效应,导致光吸收带移向短波方向。从图 2 还可以看出经氧化硅处理的纳米 TiO₂ 对 200~360 nm 之间的紫外线比纯 TiO₂ 有更强的吸收能力。

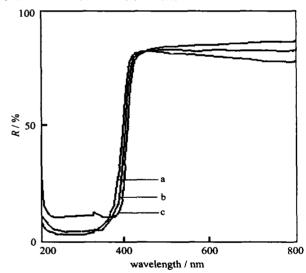


图 2 纳米 TiO₂ 的紫外 - 可见漫反射光谱

Fig. 2 UV-Visible diffuse reflection spectra of the nanosized TiO₂ powder

a: SiO₂-treated nanosized TiO₂ powder calcined at 500 °C for 2 h; b: SiO₂-treated nanosized TiO₂ powder calcined at 900 °C for 2 h; c: pure nanosized

TiO₂ powder calcined at 900 °C for 2 h

2.3 XRD 分析

由图 3 和图 4 可见, 热处理前纳米 TiO2 已为金

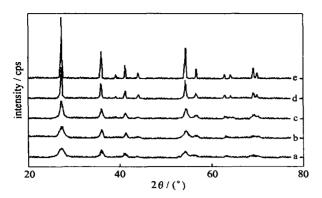


图 3 不同热处理温度下纯纳米 TiO2 的 X 射线衍射图谱

Fig. 3 XRD patterns of the pure nanosized TiO₂ powder calcined at different temperatures

a: before calcination; b: 300 °C for 2 h; c: 500 °C for 2 h; d: 700 °C for 2 h; e: 900 °C for 2 h

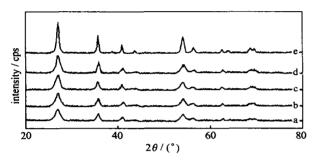


图 4 不同热处理温度下经氧化硅处理的纳米 TiO₂ X 射线 衍射图谱

Fig. 4 XRD patterns of the SiO₂-treated nanosized TiO₂ powder calcined at different temperatures

a: before calcination; b: 300 °C for 2 h; c: 500 °C for 2 h; d: 700 °C for 2 h; e: 900 °C for 2 h

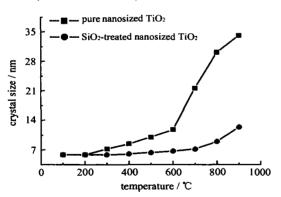


图 5 晶粒尺寸与热处理温度的关系

Fig. 5 Relationship between crystal size of the nanosized TiO₂ powders and calcining temperature

红石相结构,随着热处理温度的升高,金红石相纳米 TiO₂的衍射峰开始变得尖锐,说明晶粒逐渐长大;经 过同样的热处理温度,含有氧化硅的纳米 TiO₂ 的衍射峰明显宽化,说明其晶粒较小。图 4 中并未出现氧化硅的衍射峰,说明氧化硅是以非晶态形式存在。利用 Scherrer 公式展宽法估算出不同热处理温度下纳米 TiO₂ 的 110 面晶粒尺寸,其结果如图 5 所示。

由图 5 可知, 当热处理温度大于 200 ℃时, 纯纳米 TiO₂ 晶粒开始缓慢长大; 当温度高于 600 ℃时, 晶粒迅速长大。而经氧化硅处理的纳米 TiO₂ 在 700 ℃以下晶粒尺寸几乎不变, 当热处理温度高于 700 ℃时, 晶粒才缓慢长大, 说明氧化硅对纳米 TiO₂ 的晶粒生长有显著的抑制作用。

2.4 纳米 TiO₂ 的 TEM 分析

由图 6 可见, 未经热处理的纳米 TiO₂ 呈长条状或纺锤状, 长 60~80 nm, 宽 10~15 nm 左右, 远大于 XRD 的计算结果, 可以判断这是由更细的 TiO₂ 微晶形成的聚集体。随着热处理温度的升高, 纯纳米 TiO₂ 的原始粒径逐渐增大, 当温度高于 700 ℃时, 纳米 TiO₂ 粒子的长大速度明显加快。800 ℃下 2 h, 颗粒尺寸已超过 100 nm, 900 ℃下 2 h, TiO₂ 粒径已达 300~500 nm。

经氧化硅处理的纳米 TiO₂ 在 800 ℃以下, 颗粒形态、大小基本不变(见图 7), 说明氧化硅可有效阻止纳米 TiO₂ 原始粒径的长大。从图 7 还可以看出, 纳米 TiO₂ 粒子表面和颗粒间含有大量絮状无定形的氧化硅, 形成一个大的空间网络体系, 使得纳米 TiO₂ 粒子无法相互接触, 从而有效避免了高温造成的纳米 TiO₂ 粒子的扩散生长和团聚。900 ℃下的TEM 照片显示, 原始粒径仍在 20~40 nm, 纳米 TiO₂ 颗粒表面光滑, 颗粒之间界面明显, 含有絮状氧化硅的纳米 TiO₂ 的空间网络体系已完全消失, 氧化硅在纳米 TiO₂ 表面形成了光滑连续的包膜层。此间氧化硅在 TiO₂ 上的沉积状态发生了根本性的变化, 即由随机沉积的多孔状态变成连续均匀的致密膜。

2.5 比表面积和孔分布的分析

由表 1 可见,随着热处理温度的升高,纯纳米 TiO₂ 的比表面积逐渐下降;而经氧化硅处理的纳米 TiO₂ 的比表面积在 100~600 ℃之间基本不变,说明 其具有较好的热稳定性,当热处理温度大于 700 ℃时,比表面积急速下降。结合 TEM 结果,可以认为,700 ℃时纳米 TiO₂ 的空间网络体系开始坍塌。另外,经氧化硅处理的纳米 TiO₂ 的比表面积明显变大,一方面由于氧化硅的密度小于 TiO₂,另一方面说明含

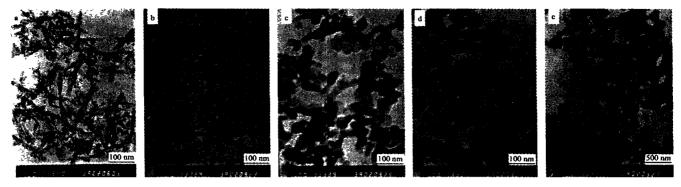


图 6 不同热处理温度下纯纳米 TiO₂ 的 TEM 照片

Fig. 6 TEM images of the pure nanosized TiO₂ powder calcined at different temperatures a: before calcination; b: 500 °C for 2 h; c: 700 °C for 2 h; d: 800 °C for 2h; e: 900 °C for 2 h

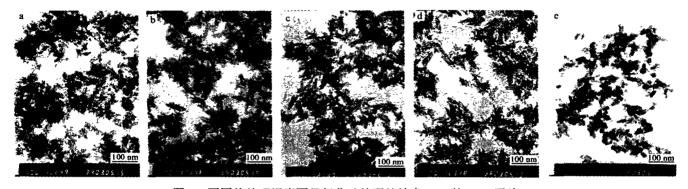


图 7 不同热处理温度下经氧化硅处理的纳米 TiO₂ 的 TEM 照片 Fig. 7 TEM images of the SiO₂-treated nanosized TiO₂ powder calcined at different temperatures

a: before calcination; b: 500 °C for 2 h; c: 700 °C for 2 h; d: 800 °C for 2 h; e: 900 °C for 2 h

硅纳米 TiO_2 具有更发达的孔结构。从图 8 可以看出,吸附等温线按 BDDT 分类属于IV等温线,是具有完好发达中孔物质的特性吸附曲线,其脱附曲线按照 IUPAC 分类属于 H1 型,表明样品具有两端开放的管状毛细孔。在 $p/p_0 \leq 0.95$ 的范围,经氧化硅处理的纳米 TiO_2 的吸附量均高于纯纳米 TiO_2 ,说明含氧化硅的纳米 TiO_2 的毛细凝结现象明显,孔径更

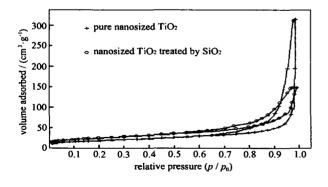


图 8 纳米 TiO₂ 的吸附 - 脱附等温线
Fig. 8 Adsorption-desorption isotherm of nanosized TiO₂ powder
(calcined at 500 ℃)

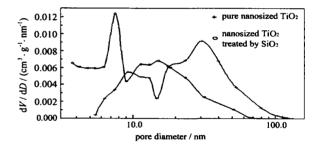


图 9 纳米 TiO₂ 的孔径分布

Fig. 9 Pore size distribution of nanosized TiO2 powder (calcined at 500 $^{\circ}\text{C}$)

小,这一点在孔分布曲线上可更直观地体现出来(见图 9)。纳米 TiO₂ 经氧化硅处理后平均孔径变小,20 nm 以下的孔量明显增多,而且孔分布较宽,这是氧化硅沉积方式的多样性造成的,如果沉积于纳米 TiO₂ 粒子之间或氧化硅粒子自身互相堆积则造成大孔数目减少,如果沉积在纳米 TiO₂ 颗粒表面,则孔径变大,孔分布与 TEM 的观察是一致的。

表 1 处理温度与纳米 TiO₂ 的比表面积的关系

Table 1 Relationship between BET Surface Areas of the Nanosized TiO2 Powder and Calcining Temperature

calcining temperature / $^{\circ}$ C -	BET surface area / (m² · g ⁻¹)	
	pure nanosized TiO2 powder	SiO ₂ -treated nanosized TiO ₂ powder
100	85. 28	105. 35
200	84. 05	106. 04
300	77. 45	102. 94
400	72. 56	103. 57
500	66. 25	101. 71
600	49. 97	95. 83
700	24. 59	76. 16
800	17. 13	46. 96
900	7. 634	23. 12

3 结 论

- (1) 氧化硅可以有效抑制纳米 TiO₂ 的晶粒和原始粒径的长大, 并使纳米 TiO₂ 的热稳定性增加。当热处理温度低于 700 ℃时, 经氧化硅处理的纳米 TiO₂ 的微结构几乎不变; 当热处理温度高于 700 ℃时, 经氧化硅处理的纳米 TiO₂ 的晶粒尺寸和原始粒径开始缓慢变大, 纳米 TiO₂ 空间网络体系开始坍塌; 900 ℃ 2 h, 空间网络体系完全消失, 纳米 TiO₂ 的原始粒径仍在 20~40 nm, 此间氧化硅在纳米 TiO₂ 上的沉积状态由随机沉积的多孔状态变成连续均匀的致密膜。
- (2) 氧化硅的存在使纳米 TiO₂ 呈现明显的量子 尺寸效应, 紫外 - 可见漫反射光谱出现蓝移现象。
- (3) 氧化硅在纳米 TiO_2 上的沉积方式多样,经氧化硅处理以后,纳米 TiO_2 的比表面积增大,平均孔径变小。

参考 文献

 Skubal L. R., Meshkov N. K., Rajh T. et al Journal of Photochemistry and Photobiology, A: Chemistry, 2002, 148 (1-3), 393.

- [2] Traversa E., Di Vona M. L., Licoccia S. et al Journal of Sol-Gel Science and Technology, 2001, 22(1-2), 167.
- [3] Jung K. Y., Park S. B. Applied. Catalysis. B: Environmenta., 2000, 25(4), 249.
- [4] Hoffmann M. R., Martin S. T., Bahnemann D. W. Chem. Rev., 1995, 95(1), 69.
- [5] Sclafani A., Palmosano L., Schiavello M. J. Phys. Chem., 1990, 94, 829.
- [6] Keiichi T., Mario F. V. C., Teruaki H. A. Chemical. Physics. Letters., 1991, 187(1,2), 73.
- [7] Zhang Qing-Hong(张青红), Gao Lian(高 濂), Guo Jing-Kun(郭景坤) Wuji Cailiao Xuebao (Chinese J. Inorg. Mater.), 2000, 15(3), 556.
- [8] Sun Jing(孙 静), Gao Lian(高 濂), Zhang Qing-Hong (张青红) Huaxue Xuebao (Acta Chim sinica), 2003, 61 (1), 74.
- [9] Qin Cao(覃 操), Wang Ting-Jie(王亭杰), Jin Yong(金 涌) Wuli Huaxue Xuebao (Acta Phys. -Chim. Sinica), 2002, 18(10), 884.
- [10]Zhang Qing-Hong(张青红), Gao Lian(高 濂), Sun Jing (孙 静) Wuji Cailiao Xuebao (Chinese J. Inorg. Mater.), 2002, 17(3), 415.

The Effect of Silica on the Microstructure of Nanosized TiO2 in the Rutile Phase

YAO Chao*.^{1.2} WU Feng-Qin² LIN Xi-Ping² WANG Xin¹
(¹ School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094)
(² Department of Chemical Engineering, Jiangsu Polytechnic University, Changzhou 213016)

The nanosized TiO₂ in the rutile phase was modified by amorphous silica using sodium silicate as source material to hydrolysis. The nanosized TiO₂ was characterized by FT-IR, UV-DRS, XRD, TEM and BET techniques. The results show that silica deposits on surface and to gap of nanosized TiO₂. Growing of the crystal grains and primary particles are suppressed. When the temperature of heat treatment is lower than 700 °C, the crystal grain, primary particle and microstructure of nanosized TiO₂ are almost unchanged. While the temperature of heat treatment is higher than 700 °C, crystal grain and primary particle grow slowly, specific surface area drops quickly. With calcining at 900 °C for 2h, the primary particle size of nanosized TiO₂ treated by silica is 20 ~ 40 nm. The ultraviolet absorbing capacity of nanosized titanium dioxide is enhanced due to the presence of silica, and its average pore diameter becomes small.

Keywords:

nanosized TiO2

rutile

crystal size

primary particle size

microstructure

specific surface area pore diameter