Vol. 19, No. 12 Dec., 2003

研究简报

hand

含硫帽的三核和四核钌羰基簇合物的合成和结构表征

韩瑞敏 吴秉芳* 王丁泽 刘树堂 胡 襄 (内蒙古大学化学化工学院,呼和浩特 010021)

关键词:	钌羰基簇合物	帽桥硫配体	合成	晶体结构
分类号:	0614. 812			

0 引 盲

磷、硫原子与过渡金属有较强的键合能力,尤其 是硫原子可作为多配位、多电子桥配体,在过渡金属 簇合物中起重要作用[1.2]。含硫羰基簇合物不断引起 人们的关注,不仅因为它们诱人的结构化学,而且也 由于它们潜在的催化性能和作为电子储存器的能 力[3]。近年来,我们合成了一系列含硫、磷桥基的铁、 钴、钌羰基簇合物。特点是,将一些较复杂的有机化 合物作为前配体与金属羰合物反应时,前配体分子 中的某些键劈开、产生的多个分子片作为配位体与 金属二元羰合物重新组合、结果形成多个结构和成 键方式各异的含硫桥基或磷桥基的新簇合物。例 如、用五元杂环 SP(C₆H₄OR)(S)N(C₆H₅)NC(Me)(R = Me, Et) 作前配体, 分别与 Co₂(CO) 8 和 Fe₃(CO) 12 反应,得到了 Co4(CO) 10(µ4-S) [µ4-P(C6H4OR)]、Co4 $(CO)_{10}(\mu_3-S)[\mu_2-P(C_6H_4OR)N(C_6H_5)NC(Me)]^{[4]}$ 和 $Fe_2(CO)_6[\mu - \eta^2 - SC(Me)NN(C_6H_5)P(C_6H_4OR)]^{[5]}$ 。用 Ċ(S)NHC(CH₃)₂P(S)(Cl)N(Ph)与Co₂(CO)₈反应, 得到了 $Co_3(CO)_7(\mu_3-S)$ [μ , η^2 -SCNC(CH₃)P(S)(Cl) $\dot{N}(Ph)$]^[6]

本文用五元杂环 SP(Fc)(S)N(C₆H₅)NC(Me)作 前配体与 Ru₃(CO)₁₂ 反应,结果得到在结构和成键 方式上与上述簇合物完全不同的两个新的含帽桥硫 (μ₃-S)或(μ₄-S)的三核和四核钌羰基簇合衍生物。

1 实验部分

1.1 试剂与仪器

合成反应及分离提纯用标准 Schlenk 技术 在氩气氛中进行,所用溶剂均经去水去氧处理。 Ru₃(CO)₁₂由中国科学院兰州化学物理研究所提供, 前配体 SP(Fc)(S)N(C₆H₅)NC(Me) L 按参考文献方 法^{17,81}合成。柱层析硅胶(100~200 目)由青岛海洋 化工厂生产,在 120 ℃下烘 24 h 后充氩气使用。红 外光谱用 NEXUS-670 FT 型 IR 仪测定(KBr 压片); ¹H NMR 谱用 Bruker DRX-500 型核磁共振仪测定 (TMS 为内标, CDCl₃ 作溶剂); MS 谱用 ZAB-HS 型 质谱仪以 FAB 法测定;元素分析在 Perkin-Elmer 2400 型仪上测定;熔点用 XT-4 型显微熔点仪测 定。

1.2 簇合物1和2的合成

在 100 mL Schlenk 瓶中先加入前配体 L 200 mg (0.49 mmol), 抽空充氩气后注入 25 mL THF, 加热 并搅拌至配体全部溶解后, 再在氩气氛中加入 200 mg(0.31 mmol) Ru₃(CO)₁₂, 62 ℃左右回流 24 h, 经 浓缩后, 在硅胶层析柱上分离, 用体积比为 2:1 的 石油醚/CH₂Cl₂ 作淋洗液, 脱出一红色带, 二次上柱 提纯, -18℃下用正己烷重结晶, 先析出一红 色粒 状晶体 1, 后析出一黑红色粒状晶体 2。簇合物 1:65 mg, 产率: 22%, m. p. 153 ℃ (分解), C₂₆H₁₇N₂O₈PS₃ FeRu₃, 式量: 971.75[元素分析计算值 (%): C 32.13, H 1.76, N 2.88; 实验值 (%): C 32.40, H

收稿日期: 2003-06-12。收修改稿日期: 2003-09-11。

国家自然科学基金资助项目(No. 29861001)和内蒙古教育厅科学基金资助项目(No. ZD01071)。

^{*}通讯联系人。E-mail: dnwbf@ imu. edu. cn

第一作者:韩瑞敏,女,26岁,硕士研究生;研究方向:金属原子篾化学。

· 1344 ·

第 19 卷

1. 89, N 2. 77]; IR(ν_{co} / cm^{-1}): 2077m, 2048s, 2030s, 2016m, 1997m, 1976vs; ¹H NMR, δ : 2. 49(s, 3H, CCH₃), 4. 36~4. 74(m, 9H, C₅H₅Fe C₅H₄), 7. 08~7. 24(m, 5H, C₆H₅)。MS(m/z): 972。簇合物 2: 12 mg, 产率: 5%, C₂₈H₁₇N₂O₁₀PS₃FeRu₄, 式量: 1128. 87[元素分析计算值(%): C 29. 79, H 1. 52, N 2. 48, 实验值(%): C 30. 34, H 1. 69, N 2. 35]; IR (ν_{co} / cm^{-1}): 2070s, 2035vs, 1992s, 1969w, 1869m, 1823w; ¹H NMR, δ : 2. 13(s, 3H, CCH₃), 4. 56~5. 36 (m, 9H, C₅H₅FeC₅H₄), 7. 08~7. 25(m, 5H, C₆H₅)° MS (m/z): 1128°

1.3 簇合物2的晶体结构测定

选取 0.60 mm × 0.50 mm × 0.35 mm 的单晶、 封入毛细管、在 Rigaku-RAXLSRAPID IP 型面探仪 上,采用石墨单色器,Mo Kα 辐射 (λ=0.071073 nm), 以 ω-θ 扫描方式, 在 2.26° < θ < 27.48° $(-15 \le h \le 15, -17 \le h \le 17, -28 \le h \le$ 27) 范围内共收集 25808 个衍射点,其中独立衍射点 7489 个, 可观察衍射点为 5428[I > 2σ(I)], 所有 衍射强度均经 Lp 因子校正。采用 SHELXTL-PLUS 程序,用直接法解出全部非氢原子坐标,并用全矩阵 最小二乘法进行结构精修。最终偏离因子 R= 0.0369、wR=0.0717。该晶体属单斜晶系、P21/c空 间群, 晶胞参数 a=1.18744(7) nm, b=1.36041 (11) nm, c = 2.20026(18) nm, $\beta = 104.126(3)$ °, V = 3.4468(5) nm³, Z = 4, $D_c = 2.175$ g \cdot cm⁻³, F(000) = 2176。最终差值电子密度的最高和最低峰 分别为 850 e · nm⁻³ 和 – 962 e · nm⁻³。

CCDC: 217076°

2 结果与讨论

2.1 簇合物的分离提纯和谱学表征

值得提出的是,反应混合物首先在硅胶层析柱 上分离时,出现了少见的现象:1和2,总是作为一条 均匀的红色带一起被淋洗下,但在-18℃下重结晶 时,却先后析出晶体。这种组成和结构都不同的两 种物质在分离过程中出现的这种现象值得注意。

簇合物 1 的 IR(ν_{co}) 谱在 2000 cm⁻¹ 左右共有 6 个端羰基伸缩振动峰,这与文献^[3]报道的簇合物 [Ru₃(CO)₈(μ_{a} -S)₂(PhPC₂Bu')] 的红外谱 [ν_{co} (环己 烷)2078s, 2046vs, 2028s, 2009s, 1992m, 1981m]很相 似; ¹H NMR 谱在 δ 2. 49 ppm 处是杂环配体 C 原子 上的甲基氢信号, N 原子上苯基的氢信号出现 在 7.08~7.24 ppm 处, 二茂铁环戊二烯基的 9 个 氢信号在 4.36~4.74 ppm 左右。结合元素分析和 MS 数据以及唐敖庆先生的 9N-L 规则 ^[9], 推测其组 成和结构与文献^[3]报道的簇合物相似,它可能是 Rus (CO) $_{8}(\mu_{a}$ -S) $_{2}$ [P(Fc)N(Ph)NC(Me)S]。其结构示意 如下图。

簇合物 2 的 IR(ν_{co}) 在 2000 cm⁻¹ 附近有四个 端羰基伸缩振动峰, 1850 cm⁻¹ 左右出现两个桥羰 基伸缩振动峰, 与 X 射线晶体结构测定的结果一 致。2 应该是 Ru₄(CO)₇(μ -CO)₃(μ_4 -S)₂[P(Fc)N(Ph) NC(Me)S]。

2.2 簇合物2的晶体和分子结构

簇合物2的主要键长和键角列于表1,分子结构如图1所示。该簇合物的结构分析表明,分子中四个钌原子构成了一个正方平面(平面Ru(1)Ru(2)Ru(4)和Ru(3)Ru(2)Ru(4)之二面角为179.7°)。 由于平面Ru(2)Ru(1)Ru(4)和C(8)Ru(1)Ru(4),平面Ru(3)Ru(1)Ru(2)和C(9)Ru(1)Ru(2)以及平

图 1) 簇合物 2 的分子结构 Fig. 1 Molecular structure of cluster 2

韩瑞敏等: 含硫帽的三核和四核钌羰基簇合物的合成和结构表征

#= 1

体入标为的加八种长和体务

· 1345 ·

Table 1 Selected Bond Length (nm) and Bond Angle (°) for 2								
Ru(1)-P(1)	0.22741(11)	Ru(1)-S(2)	0.25481(11)	Ru(1)-S(1)	0.25677(12)			
Ru(1)-Ru(2)	0.27381(7)	Ru(1)-Ru(4)	0.27400(5)	Ru(2)-C(9)	0.1892(5)			
Ru(2)-S(2)	0.24693(13)	Ru(2)-S(1)	0.24757(13)	Ru(2)- $Ru(3)$	0.27629(7)			
Ru(3)-S(1)	0.24309(11)	Ru(3)-S(2)	0.24526(12)	Ru(3)-Ru(4)	0.27806(7)			
Ru(4)-S(1)	0.24587(13)	Ru(4)-S(2)	0.24593(13)	Fe(5)-C(19)	0.2018(4)			
S(3)-C(17)	0.1769(5)	S(3)-P(1)	0.21177(16)	P(1)-N(1)	0.1723(3)			
P(1)-C(19)	0.1778(4)	N(1)-N(2)	0.1395(4)	N(1)-C(11)	0.1405(5)			
N(2)-C(17)	0.1257(6)	C17-C18	0.1493(6)					
P(1)-Ru(1)-S(2)	93.44(4)	P(1)-Ru(1)-S(1)	166.90(4)	S(2)-Ru(1)-S(1)	73.87(4)			
P(1)-Ru(1)-Ru(2)	114.68(4)	S(2)-Ru(1)-Ru(2)	55, 55(3)	S(1)-Ru(2)-Ru(2)	55.51(3)			
P(1)-Ru(1)-Ru(4)	120.28(3)	S(2)-Ru(1)-Ru(4)	55.28(3)	S(1)-Ru(1)-Ru(4)	55.08(3)			
Ru(2)-Ru(1)-Ru(4)	89.34(2)	S(2)-Ru(2)-S(1)	76.88(4)	S(2)-Ru(2)-Ru(1)	58.32(3)			
S(1)-Ru(2)-Ru(1)	58.75(3)	S(2)-Ru(2)-Ru(3)	55.56(3)	S(1)-Ru(2)-Ru(3)	54.96(3)			
Ru(1)-Ru(2)-Ru(3)	91.54(2)	S(1)-Ru(3)-Ru(2)	56.50(3)	S(2)-Ru(3)-Ru(2)	56.14(3)			
S(1)-Ru(3)-Ru(4)	55.81(3)	S(2)-Ru(3)-Ru(4)	55.64(3)	Ru(2)-Ru(3)-Ru(4)	88.01(2)			
S(1)-Ru(4)-S(2)	77.38(4)	S(1)-Ru(4)-Ru(1)	58.90(3)	S(2)-Ru(4)-Ru(1)	58.39(3)			
S(1)-Ru(4)-Ru(3)	54.87(3)	S(2)-Ru(4)-Ru(3)	55.41(3)	Ru(1)-Ru(4)-Ru(3)	91.12(2)			
C(17)-N(2)-N(1)	115.4(4)	Ru(4)-C(8)-Ru(1)	80.74(17)	Ru(2)-C(9)-Ru(1)	82.48(16)			
Ru(3)-C(10)-Ru(2)	74.03(17)	N(2)-C(17)-S(3)	120.5(4)	Ru(3)-S(1)-Ru(4)	69.31(3)			
Ru(3)-S(1)-Ru(2)	68.54(4)	Ru(4)-S(1)-Ru(2)	102.61(4)	Ru(3)-S(1)-Ru(1)	104.07(4)			
Ru(4)-S(1)-Ru(1)	66.02(3)	Ru(2)-S(1)-Ru(1)	65.74(3)	Ru(3)-S(2)-Ru(4)	68.96(3)			
Ru(3)-S(2)-Ru(2)	68.30(3)	Ru(4)-S(2)-Ru(2)	102. 78(4)	Ru(3)-S(2)-Ru(1)	104.02(4)			
Ru(4)-S(2)-Ru(1)	66.32(4)	Ru(2)-S(2)-Ru(1)	66.13(3)	C(17)-S(3)-P(1)	92. 42(18)			
N(1)-P(1)-S(3)	91.55(13)	N(2)-N(1)-P(1)	119.7(3)	C(19)-P(1)-S(3)	105.48(15)			

面 Ru(1) Ru(2) Ru(3) 和 C(10) Ru(2) Ru(3) 的二面 角分别为 180°, 180°和 171.5°, 因此, 三个边桥羰 基 CO 与四个 Ru 原子共面。三个具有边桥 CO 基的 Ru-Ru 键 (平均键长 0.2747 nm) 比无桥羰基的 Ru (3)-Ru(4)键(0.27806(7) nm)稍短。在 Ru4 平面两 侧对称地有两个 μ -S 原子"盖帽"。由于 Ru(1)原子 上配体[P(Fc)N(Ph)NC(Me)S]的 σ 诱导效应^[3], 使 其较高的电子密度从 Ru(1) 经 Ru(2) 传递到 Ru(3) 上^[10], 因此键长 Ru(1) -S(0.25677 nm, 0.25481 nm), Ru(2)-S(0.24757 nm, 0.24693 nm)和 Ru(3)-S (0.24309, 0.24526nm)依次缩短; 而 Ru(4)与 Ru(1) 直接键合, Ru(4) -S 的键长为 0.24587 nm, 0.24593 nm。该分子中 Ru4S₂ 骨架为假八面体构型。

簇合物 2 分子中, 四核钉原子簇骨架共 62 个价 电子 (两个 μ-S 原子各提供 4e, 杂环配体的 P 原子 提供 2e, 10 个 CO 基提供 20e), 根据(9N-L)规则, 对 于正方形的四核簇骨架应该为 64e。但(9N-L)个价 轨道中包括非键轨道, 而非键轨道上是否充满电子 不影响簇合物的稳定性, 因此, 簇价电子数略低于 64e, 该簇合物也是稳定的。

2.3 Ru₃(CO)₁₂ 与前配体 L 的反应性

对簇合物 1 和 2 的谱学和结构表征结果表 明, Ru₃(CO)₁₂ 在与前配体五元杂环 L 反应过程中, 前配体只发生 P=S 键的断裂,没有开环,形成 的分子片中 S 当做帽桥 (μ-S),而分子片 [P(Fc) N (Ph)NC(Me)S]则取代在 Ru 的端位上。这与本文 开头提到的 Fe₃(CO)₁₂ 和 Co₂(CO)₈ 与类似的五元杂 环 SP(PhOR)(S)N(Ph)NC(Me)反应时的情况不同, 后者在反应中,不仅有 P=S 键劈开,而且环上的 P-S, P-N 和 S-C 键均发生断裂,形成更多的分子片 作配体。原因可能有两个:其一是由于二茂铁基比苯 氧烷基 (PhOMe, PhOEt)的空间位阻大,倾向于端位 单取代;其二是 Ru₃(CO)₁₂ 比 Fe₃(CO)₁₂ 和 Co₂(CO)₈ 稳定,其反应活性较低,配体环不易被打开。

参考文献

- [1] Adams R. D., Foust D. F. Organometallics, 1983, 2, 323.
- [2] Adams R. D., Babin J. E., Tasi M. Inorg. Chem., 1986, 25, 4512.

ţ.

· 1346 ·

- [3] Hogarth G., Taylor N. J., Carty A. J. et al J. Chem. Soc. Chem. Commun., 1988, 11 ~ 12, 834.
- [4] WU Bing-Fang(吴秉芳), ZHANG Fu-Qiang(张富强), LIU Shu-Tang(刘树堂) et al Gaodeng Xuaxue Xuebao(Chem. J. Chinese Universities), 2002, 23(8), 1470.
- [5] GONG Pei-Jun(宮培军), WU Bing-Fang(吴秉芳), HU Qi-Tu(胡其图) et al Wuji Huaxue Xuebao(Chinese Journal of Inorganic Chemistry), 2001, 17(6), 794.
- [6] GUAN Min(关 敏), LIU Shu-Tang(刘树堂), WU Bing-Fang(吴秉芳) et al Wuji Huaxue Xuebao(Chinese Journal

of Inorganic Chemistry), 2002, 18(4), 351.

- [7] Lecher H. Z., Greewood R. A., Whitehouse K. C. et al J. Am. Chem. Soc., 1956, 78, 5018.
- [8] El-Barbry A. A., Scheibye S., Lawesson S. O. et al Acta Chemica. Scandinavia, 1980, B34, 579.
- [9] TANG Ao-Qing(唐敖庆), LI Shu-Qian(李树前) Kexue Tongbao(Chinese Science Bulletin), 1983, (1), 25.
- [10] Bodensieck U., Santiago J., Stoeckli-Evens H. et al J. Chem. Dalton Trans., 1992, 2, 255.

Synthesis, Characterization and Structures of Trinuclear and Tetranuclear Ruthenium Carbonyl Clusters Containing Capping S Atoms

HAN Ruei-Min WU Bing-Fang* WANG Ding-Ze LU Shu-Tang HU Xiang (College of Chemistry and Chemical Engineering, Neimongol University, Hohhot 010021)

The reaction of Ru₃(CO)₁₂ with five-membered cyclic SP(S)(Fc)N(Ph)NC(Me) gave two novel trinuclear and tetranuclear ruthenium carbonyl clusters containing capping S atoms in Ru₃(CO)₈(μ_3 -S)₂[P(Fc)N(Ph)NC(Me)S] 1 and Ru₄(CO)₇(μ -CO)₃(μ_4 -S)₂[P(Fc)N(Ph)NC(Me)S] 2 (Fc = C₅H₅FeC₅H₄). During the reaction, the ligand precursor cleaved only in its P = S bond to give the fragments S and [P(Fc)N(Ph)NC(Me)S], and then coordinated to the ruthenium atoms to form the clusters as listed above. The clusters have been characterized by elementary analysis, IR, ¹H NMR and MS spectroscopy. The crystal structure of cluster 2 has been determined by X-ary diffraction techniques. The crystal belongs to monoclinic with space group P2₁/c. The unit cell parameters are as follows: a = 1.18744(7) nm, b = 1.36041(11) nm, c = 2.20026(18) nm, $\beta = 104.126(3)$ °, V = 3.4468(5) nm³, $D_c = 2.175$ g · cm⁻³, Z = 4. In the molecule, the three bridging carbonyls and Ru4 are planar and with a pseudo-octahedral Ru₄S₂ skeleton. The terminal carbonyl of Ru1 was substituted by the cyclic ligand [P(Fc)N(Ph)NC(Me)S]. CCDC: 217076.

Keyword: ruthenium carbonyl cluster coordinated capping S atom synthesis crystal structure