第 12 期 2003 年 12 月 Vol. 19, No. 12 Dec., 2003

研究简报

二聚体配合物[(n-Bu)₂Sn(C₁₀H₈N₂O₃)(C₂H₅OH)]₂的合成和晶体结构

刘宏文¹ 卢文贯^{*,1} 陶家洵² 王如骥² (¹ 韶关学院化学系, 韶关 512005) (² 清华大学化学系, 北京 100084)

关键词: 二有机锡羧酸酯 2-羰基丙酸苯甲酰腙 晶体结构 分类号: 0614.24

二有机锡羧酸酯因其具有广泛的生物活性而日 益受到人门的重视^[1-4]。实验证明,它们的生物活性 与锡的配位状态有关^[5]。因此研究它们的结构将有 助于预测它们的生物活性,为开发它们的应用提供 理论依据。有关该类化合物的晶体结构研究结果表 明,中心锡原子的配位形式决定于羧酸配体的类 型^[6,7]。为进一步探索二有机锡羧酸酯的结构类型、 羧酸配体中带额外孤对电子的原子与锡原子的作用 方式以及分子结构与其生物活性的关系,我们以 2-羰基丙酸苯甲酰腙 Schiff 碱 C₁₀H₁₀N₂O₃ 作为配体与 二正丁基氧化锡(*n*-Bu)₂SnO 在苯/乙醇的混合溶剂 中进行反应,合成了未见文献报道的新型二聚体配 合物[(*n*-Bu)₂Sn(C₁₀H₈N₂O₃)(C₂H₅OH)]₂,并用单晶 X- 射线衍射法测定了它的晶体结构。

1 实验部分

1.1 试剂和仪器

二正丁基氧化锡(*n*-Bu)₂SnO 为北京化工三厂 产品,丙酮酸(生化试剂)为中国医药(集团)上海化 学试剂公司产品,苯甲酰肼以及其它有机溶剂均为 分析纯试剂,直接使用。2-羰基丙酸苯甲酰腙 Schiff 碱配体 C₁₀H₁₀N₂O₃·H₂O 是在乙醇溶剂中由等物质 的量的 2-羰基丙酸和苯甲酰肼反应制得。使用 Bruker P4 单晶衍射仪。

1.2 标题配合物的合成

配体 2- 羰基丙酸苯甲酰腙 C10H10N2O3・H2O

收稿日期: 2003-05-16。收修改稿日期: 2003-08-15。

0. 224g(1mmol) 和二正丁基氧化锡(n-Bu)₂SnO 0. 249g(1mmol) 混合加入 100mL 单口烧瓶中,加入 C₆H₆/C₂H₅OH(V/V, 3/1) 混合溶剂 50mL,在分水 条件下搅拌回流 6h,趁热过滤,滤液在室温下放置, 溶剂慢慢挥发,得淡黄色晶体。再以 C₆H₆/C₂H₅OH (V/V, 1/1) 混合溶剂溶解后静置,一周后析出可供 X-射线测试用的块状橙黄色标题配合物[(n-Bu)₂ Sn(C₁₀H₈N₂O₃)(C₂H₅OH)]₂ 单晶。该晶体不稳定,需 与母液一起保存,如溶剂挥发至干,则变为不透明的 淡黄色固体粉末,其元素分析结果(%):C 49.58,H 5.81,N 6.47,与[(n-Bu)₂Sn(C₁₀H₈N₂O₃)]₂的计算值 (%):C 49.43,H 5.95,N 6.41 相符,表明此时不含 乙醇配体。

1.3 晶体结构的测定

选取大小为 0. 50mm × 0. 50mm × 0. 50mm 的标 题配合物单晶,在 Bruker P4 X-射线单晶衍射仪上, 于室温 [(295 ± 2) K]下用经石墨单色器化的 Mo Ka 射线(λ = 0. 071073nm),在 5. 2° < θ < 13. 2°的范围 内扫描,收集到 25 个衍射点,以测定晶胞参数。在 -1 < h < 29, -29 < k < 1, -18 < l < 1, θ_{max} = 25°范围内用 ω 扫描方式共收集 5141 个衍射强度 数据,其中独立衍射点 5136 个, 2442 个 [$I \ge 2\sigma$ (I)]可观测衍射点。数据收集程序为 XSCANS 程序 (Bruker, 1997)。全部强度数据经 Lp 因子和经验吸 收校正。由直接法解出 Sn、O、N 和大部分 C 原子的 位置,其它 C 原子的位置由差值 Fourier 合成中逐步

r

^{*}通讯联系人。E-mail: lwg@ sgu. edu. cn

第一作者:刘宏文, 男, 36岁, 副教授;研究方向:有机合成。

· 1352 ·

无机化学学报

第19卷

	表 1	标题配合	物的晶 <mark>体学数</mark> 损	ŝ	
Table 1	Details of Data	Collection,	Processing and	Structure	Refinement

molecular formula	$[Sn(C_4H_9)_2(C_{10}H_8N_2O_3)(C_2H_5OH)]_2$	unique (n)	5136				
molecular weight	966. 33	observed $[I \ge 2\sigma(I)]$	2442				
crystal system	tetragonal	absorption coefficient/mm ⁻¹	1. 112				
space group	141/a (No. 88)	No. of variables, p	244				
a/nm	2. 4890(2)	weighting scheme, w^{-1}	$\sigma^2(F_{\bullet}^2) + (0.001P)^2 + 3.000P$				
6/nm	2.4890(2)	P	$(F_{e}^{2} + 2F_{e}^{2})/3$				
c / nm	1.5170(3)	R_1^{\bullet} (for observed data)	0. 0530				
V∕ nm³	9. 398(2)	wR_2 (for observed data)	0. 0971				
Z	8	R_1^{\bullet} (for all reflections)	0. 1024				
F(000)	3968	$wR_2^{\bullet \bullet}$ (for all reflections)	0. 1172				
density (calcd)/(g · cm ⁻³)	1. 366	$S = \text{Goof}^{\bullet \bullet \bullet \bullet}$	1.023				
reflections measured total	5141	residual extrema in final difference map/($e \cdot nm^{-3}$)	- 329 to 365				

$$R_{1} = \frac{\sum ||F_{*}| - |F_{c}||}{\sum |F_{*}|}, \quad wR_{2} = \sqrt{\frac{\sum [w(F_{*}^{2} - F_{c}^{2})^{2}]}{\sum w(F_{*}^{2})^{2}}}, \quad Goof = S = \sqrt{\frac{\sum [w(F_{*}^{2} - F_{c}^{2})^{2}]}{n - p}}$$

确定。乙醇中的羟基氢位置在差值 Fourier 图中找 出,其余氢原子的位置则从理论计算中得到,并参与 最终的结构因子计算。全部非氢原子坐标及其各向 异性温度因子经全矩阵最小二乘法进行修正至收 敛。结构解析及修正的全部计算在 IBM PC-586 计算 机上以 SHELXTL NT 5.10 程序 (Sheldrick, 1995)进 行。表1给出了标题配合物的晶体学数据。

CCDC: 212696°

2 结果与讨论

二聚体配合物[(*n*-Bu)₂Sn(C₁₀H₈N₂O₃)(C₂H₅-OH)]₂的分子结构、配位多面体和在晶胞中的堆积 分别示于图 1、图 2 和图 3,部分键长及主要键角列 于表 2。

由图 1 可见,在标题配合物的分子结构中, Sn1 与来自于 2- 羰基丙酸苯甲酰腙 Schiff 碱配体中的 1 个羧基氧原子 02、1 个烯醇氧原子 01、1 个亚氨基

图 1 标题配合物的分子结构图 Fig. 1 Molecular structure of the title complex

图 2 Sn1 的配位多面体

图 3 标题配合物分子在晶胞中的堆积图 Fig. 3 Packing diagram of the complex molecules in a unit cell

1

第12期

刘宏文等: 二聚体配合物[(n-Bu)2Sn(C10HsN2O3)(C2HsOH)]2 的合成和晶体结构

如八体化五十两体会

· 1353 ·

Table 2 Selected Bond Lengths (nm) and Bond Angles(°)								
Sn(1)-C(15)	0.2079(3)	Sn(1)-O(4)	0.2448(3)	0(4)-C(19)	0.1348(5)			
Sn(1)-C(11)	0.2100(3)	Sn(1)-O(2)"	0.2799(2)	N(1)-C(7)	0.1316(4)			
Sn(1)-O(1)	0.2173(2)	0(1)-C(7)	0.1290(4)	N(1)-N(2)	0.1370(3)			
Sn(1)-N(2)	0.2245(2)	0(2)-C(9)	0.1279(3)	N(2)-C(8)	0.1297(4)			
Sn(1)-O(2)	0.2311(2)	0(3)-C(9)	0.1233(4)					
C(15)-Sn(1)-C(11)	159.22(12)	0(2)-Sn(1)-0(4)	140.77(7)	C(8)-N(2)-Sn(1)	121.1(2)			
C(15)-Sn(1)-O(1)	95.67(11)	C(15)-Sn(1)-O(2)*1	78.9(1)	N(1)-N(2)-Sn(1)	118.66(17)			
C(11)-Sn(1)-O(1)	97.95(10)	C(11)-Sn(1)-O(2) ^{≠1}	82.0(1)	N(2)-C(8)-C(10)	124.1(3)			
C(15)-Sn(1)-N(2)	103. 59(10)	O(1)-Sn(1)-O(2)"	153.6(1)	N(2)-C(8)-C(9)	113. 8(3)			
C(11)-Sn(1)-N(2)	95.78(10)	$N(2)-Sn(1)-O(2)^{*1}$	136.2(1)	C(10)-C(8)-C(9)	122.1(3)			
O(1)-Sn(1)-N(2)	70, 18(8)	$0(2)$ -Sn(1)- $0(2)^{*1}$	66.5(1)	O(3)-C(9)-O(2)	126.5(3)			
C(15)-Sn(1)-O(2)	90.55(11)	$O(4)-Sn(1)-O(2)^{*1}$	74.3(1)	O(3)-C(9)-C(8)	116.3(3)			
C(11)-Sn(1)-O(2)	89, 11(9)	C(7)-O(1)-Sn(1)	115.68(19)	O(2)-C(9)-C(8)	117.2(3)			
O(1)-Sn(1)-O(2)	139.82(7)	C(9)-O(2)-Sn(1)	117.48(18)	C(12)-C(11)-Sn(1)	115.1(2)			
N(2)-Sn(1)-O(2)	69.77(8)	C(9)-O(2)-Sn(1)**	128.3(2)	C(16)-C(15)-Sn(1)	120.9(2)			
C(15)-Sn(1)-O(4)	83.31(11)	Sn(1)-O(2)-Sn(1)"	113.5(1)	O(4)-C(19)-C(20)	103.8(4)			
C(11)-Sn(1)-O(4)	83,85(11)	C(19)-O(4)-Sn(1)	136.6(3)	$O(4) - H(4) \cdots O(3)^{*1}$	171.00			
O(1)-Sn(1)-O(4)	79.41(8)	C(7)-N(1)-N(2)	109.1(2)					
N(2)-Sn(1)-O(4)	149, 26(8)	C(8)-N(2)-N(1)	120.0(2)					

Symmetry transformation codes: #1: 1.5 - x, 0.5 - y, 0.5 - z.

氦原子 N2,来自于乙醇配体中的1个羟基氧原 子 04、以及来自于 2 个正丁基的碳原子 C11 和 C15 等配位成键。其中羧基氧原子 02 作为氧桥原子 同时又连接另一个锡原子 Sn1*1, Sn1*1-02 的键长值 为 0. 2799(2) nm, 其值比 0 → Sn 分子内配键的键 K ($r_c(0)$ + $r_c(S_n)$ + 0. 50 = 0. 066 + 0. 140 + 0. 050 =0.256nm) 略长, 但却又远小于 Sn 和 O 原子的范 德华半径之和 (0.368nm), 这表明 02 与 Sn1*1(或 Sn1 与 02*1)之间发生了较弱的键合作用。由于分子 间的这种作用,使得该配合物在晶体中是由 2 个 (n-Bu)₂Sn(C₁₀H₈N₂O₃)(C₂H₅OH)分子通过羧基氧原 子与锡原子间的配位桥联作用,形成了具有中心对 称的二聚体结构、对称中心位于两个锡原子联线的 中心点上。配合物分子中存在一个 Sn2O2 平面四边 形中心内环。在该配合物的中心锡原子的配位圈 内, Sn1 原子周围的配位环境是: 01、02、02*1、04 和 N2 占据了赤道平面上的五个位置, 01、02、02*1、04 和 N2 共平面 (配位平面 1), 最大偏差为 0.0075nm, Sn1 偏离配位平面 1 的距离是 0.0012nm, 二个正 丁基碳原子 C11 和 C15 则占据了该平面两侧的轴 向位置, 轴向 C15-Sn1-C11 键角为 159.22(12)°, 它 与 180°偏离了 20.78°。因此,在该配合物的分子结 构中、中心锡原子为畸变程度较大的五角双锥配位 结构 (图 2 所示)。该二聚体配合物的结构形式与 二聚体配合物{(n-Bu)2Sn[2-(PO3H)C5H3NCO2-6] $(H_2O)_2^{[7]} \{ (CH_3)_2 Sn[(O_2CCH_2)_2 NH](H_2O) \}_2^{[8]} \pi$ {(PhCH₂)₂Sn[2, 6-(O₂C)₂C₅H₃N](CH₃OH)}²^[9]等的 结构形式相似,但这些二聚体配合物的 $O \rightarrow Sn$ 配 键键长值远比标题配合物的 0 → Sn 配键键长值 短。标题配合物的 0 → Sn 配键键长值与二聚体配 合物 { $(n-Bu)_2Sn[(\eta^5-C_5H_5)Fe(\eta^5-C_5H_4)CO_2]_2$ } $_2^{[10]}$ 的 $O \rightarrow Sn$ 配键键长值相接近,但羧基的配位形式 却又明显的不同。标题配合物与二聚体配合物 μα-0- $\{[\mu - (n-Bu)_2 Sn(\mu - FcCO_2)(n-Bu)_2 Sn]FcCO_2\}^{[11]}$ 相比 较,则无论是结构形式还是 0 → Sn 配键键长值均 有 明显的不同。在标题配合物的分子结构中, Sn1-O1[0.2173(2) nm]、Sn1-O2[0.2311(2) nm] 和 Sn-N[0.2245(2) nm] 等键长值均比单核五配位扭曲三 角双锥配位结构的配合物 Ph₂Sn[OC₆H₄CHN₂C (O) C₆H₄NH₂-o] (0.2076nm、0.2119nm 和 0.2163

第19卷

· 1354 ·

nm) ${}^{[12]}$ 、 (*n*-Bu) ${}_{2}Sn(OC_{6}H_{4}CH = NCH($ *i* $-Pr) CO_{2})$ (0. 2078nm、0. 2151nm 和 0. 2158nm) ${}^{[13]}$ 和[Ph₂Sn(2-OC₁₀H₆CH = NCH₂CO₂)] SnPh₂Cl₂(0. 2068nm、0. 2188 nm 和 0. 2136nm) ${}^{[14]}$ 中相对应的 Sn-O 键和 Sn-N 键 的键长值略长。

在该配合物的分子结构中,由 2-羰基丙酸苯甲 酰腙 Schiff 碱配体提供的 O1、C7、N1 和 N2 等原子 和 Sn1 原子所形成的五元环处在一个平面上(螯合 平面 2),其最小二乘平面的平均偏差为 0.0016nm; 由 O2、C9、C8 和 N2 等原子和 Sn1 原子所形成的五 元环平面(螯合平面 3)共面性也较好,其最小二乘 平面的平均偏差为 0.0037nm。螯合平面 2 与螯合平 面 3 的二面角为 1.6°。螯合平面 2 和螯合平面 3 与 配位平面 1 的二面角分别是 1.1°和 1.3°。C1 所在的 苯环平面与配位平面 1、螯合平面 2 和螯合平面 3 的二面角分别是 2.8°、3.9°和 3.4°。可见,整个二聚 体分子中除正丁基和乙醇分子中的乙基外,其余的 原子基本上都是共面的。

在标题配合物中, C7-O1 的键长为 0. 1290(4) nm, 它介于正常的碳氧单键键长 (0. 1430nm) 和双键 键长 (0. 1224nm) 之间。C7-N1 的键长为 0. 1316(4) nm, 与 C-N 单键键长 (0. 147nm) 和 C = N 双键键长 (0. 127nm) 比较发现, C7-N1 键更接近于 C = N 双 键, C7-N1 键长与 C8-N2 键长 [0. 1297(4) nm] 相接 近, N1-N2 键键长 0. 1370(3) nm, 属于 N-N 单键键长 范围^[15, 16]。这些数据表明了, 2- 羰基丙酸苯甲酰腙 Schiff 碱配体是经过烯醇化脱氢方式与 Sn 原子形成 了共轭螯合环的, 在 2- 羰基丙酸苯甲酰腙 Schiff 碱 配体中形成了 -C = N-N = C- 与苯环及羧基的大共轭 体系, 这进一步说明整个分子具有很好的共面性。

此外,在标题配合物的分子结构中,未与锡原子 Sn1(或 Sn1*1) 配位的一个羧基氧原子 O3*1(或 O3) 与二聚体分子中另一配位乙醇分子中的羟基氢形成 了二聚体分子内氢键 [O3*1…H的键长为 0.1345nm, O4-H…O3*1的键角为171.0°]。无疑, 这些二聚体分子内氢键的存在是标题配合物以二聚 体稳定结构存在的另一重要因素,它对二聚体分子 的平面构型也起到了一定的稳定作用。 参考文献

- [1] HU Chun (胡 春), TAN Ri-Hong (谭日红) Zhongguo Yaowu Huaxue Zazhi (Chinese J. Medi. Chem.), 1992, 27 (8), 455.
- [2] Gielen G., Bouhdid A., Kayser F. et al Appl. Organomet. Chem., 1995, 9, 251.
- [3] YANG Zhi-Qiang(杨志强), SONG Xue-Qing(宋雪清), XIE Qing-Lan(谢庆兰) Youji Huaxue(Chinese J. Org. Chem.), 1996, 16(2), 111.
- [4] LU Wen-Guan(卢文贯), TAO Jia-Xun(陶家洵), LI Xu-Yu (李旭宇) et al Yingyong Huaxue(Chinese J. Appl. Chem.), 2000, 17(2), 126.
- [5] Eliott B. M., Aldridge W. N., Bridges J. W. Biochem. J., 1979, 177, 461.
- [6] Tiekink E. R. T. Appl. Organomet. Chem., 1991, 5, 1.
- [7] Gielen M., Dalil H., Ghys L. et al Organometallics, 1998, 17, 4259.
- [8] Lee F. L., Gabe E. J., Khoo L. E. et al Inorg. Chim. Acta, 1989, 166, 257.
- [9] YIN Han-Dong(尹汉东), WANG Chuan-Hua(王传华),
 WANG Yong(王 勇) et al Gaodeng Xuexiao Huaxue
 Xuebao(Chem. J. Chin. Univ.), 2003, 24(1), 68.
- [10] LU Wen-Guan(卢文贯), TAO Jia-Xun(陶家洵) et al Wuji Huxue Xuebao(Chinese J. Inorg. Chem.), 2003, 19(2), 159.
- [11] LU Wen-Guan(卢文贯), TAO Jia-Xun(陶家洵) et al Wuji Huxue Xuebao (Chinese J. Inorg. Chem.), 2000, 16(3), 439.
- [12] Wang J. T., Liu F. Q., Zhang Y. W. et al J. Organomet. Chem., 1989, 375, 173.
- [13]Smith F. E., Hynes R. C., Ang T. T. et al Can. J. Chem., 1992, 70, 1114.
- [14] Khoo L. E., Xu Y., Goh N. K. et al Polyhedron, 1997, 16
 (4), 573.
- [15]YANG Zheng-Yin(杨正银), YANG Ru-Dong(杨汝栋), YU Kai-Bei(郁开北) Huaxue Xuebao(Acta Chim. Sinica), 1999, 57(3), 236.
- [16] HE Shui-Yang(何水样), CAO Wen-Kai(曹文凯), CHEN Jun-Li(陈军利) et al Gaodeng Xuexiao Huaxue Xuebao (Chem. J. Chin. Univ.), 2002, 23(6), 991.

Synthesis and Crystal Structure of the Dimer Complex $[(n-Bu)_2Sn(C_{10}H_8N_2O_3)(C_2H_5OH)]_2$

LIU Hong-Wen¹ LU Wen-Guan^{*,1} TAO Jia-Xun² WANG Ru-Ji² (¹Department of Chemistry, Shaoguan University, Shaoguan 512005) (²Department of Chemistry, Tsinghua University, Beijing 100084)

The novel seven-coordinate complex $[(n-Bu)_2Sn(C_{10}H_8N_2O_3)(C_2H_5OH)]_2$ $(C_{10}H_8N_2O_3^{2^-}$ is the dinegative ion of 2-oxo-propionic acid benzoyl hydrazone) was synthesized by the reaction of $(n-Bu)_2SnO$ with 2-oxo-propionic acid benzoyl hydrazone in 1:1 molar ratio in benzene-ethanol (V/V, 3/1), and its structure was characterized by X-ray single crystal diffraction. The crystal belongs to a tetragonal system with space group $I4_1/a$, a = 2.4890(2)nm, b = 2.4890(2) nm, c = 1.5170(3) nm, V = 9.398(2) nm³, Z = 8, F(000) = 3968, $D_c = 1.366g \cdot cm^{-3}$, and the structure was refined to final $R_1 = 0.0530$, $wR_2 = 0.0971$. The structure of the title complex is described as a dimer through weak interactions of Sn \cdots O bonding and hydrogen bond. The tin atoms rendered seven-coordination in a distorted pentagonal bipyramid geometry structure, four oxygen atoms [O1, O2, O2^{e1} and O4] and one nitrogen atom N2 formed the equatorial plane and C11-Sn1-C15 is the axis. CCDC: 212696.

Keywords: diorganotin carboxylate 2-oxo-propionic acid benzoyl hydrazone crystal structure