

[Bi₂Cl₁₀(H₂-Norf)₄(H₂O)₈](H-Norf 是诺氟沙星)

李咏华 能仁根*

(南京大学配位化学国家重点实验室,南京 210093)

关键词:晶体结构;诺氟沙星;铋

中图分类号: 0614.53+2 文献标识码: A 文章编号: 1001-4861(2005)04-0571-02

[Bi₂Cl₁₀(H₂-Norf)₄(H₂O)₈] where H-Norf is Norfloxacin[®]

LI Yong-Hua XIONG Ren-Gen*

(Coordination Chemistry Institute, The State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093)

Abstract: The crystal structure of [Bi₂Cl₁₀(H₂-Norf)₄(H₂O)₈] (1) comprises [H₂-Norf]⁺ cations and [Bi₂Cl₁₀]₄⁻ anions, that are loosely associated via H-bonding interactions, as well as water molecules that also participate in H-bonding interactions. Strong blue-fluorescent emission of 1 at solid state is observed at the room temperature. CCDC: 238237.

Key words: crystal structure; Norfloxacin®; bismuth(III)

Comment

During investigations on various metal complexes with H-Norf^[1,2], complexation with Bi was investigated. Fig.1 shows the structure of the first Bi(II)_R complex containing the antibacterial drug Norfloxacin°, [Bi₂Cl₁₀ (H₂-Norf)₄(H₂O)₈]. This is an ionic compound comprising four [H₂-Norf]⁺ cations, one [Bi₂Cl₁₀]₄⁻ anion and eight lattice water molecules. In the cation, the exo-N atom of the piperazine ring is protonated, and thereby loses its coordination ability. The dinuclear and centrosymmetric anion comprises two edge-shared octahedra. The constituents of the structure are connected into a 3D network through H-bonding interactions, as shown in Fig.2. On the other hand, there are intensive investigations about norfloxacin metal complex blue-fluorescent emission [3]. As we know, free ligand also

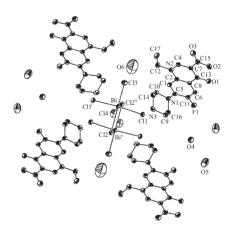


Fig.1 Structure of $[Bi_2Cl_{10}(H_2-Norf)_4(H_2O)_8]$; H atoms are omitted for clarity

Key geometric parameters: Bi-Cl1 0.268 27(13), Bi-Cl2 0.291 8(2), Bi-Cl3 0.258 1(2), Bi-Cl4 0.255 7(3) nm, Cl1-Bi-Cl2ⁱⁱ 89.75(3)°, Cl3-Bi-Cl4 98.01(11)°, Cl3-Bi-Cl1ⁱ 92.42(3)°, Cl4-Bi-Cl2ⁱⁱ 167.64(9)°, Bi-Cl2-Bⁱⁱⁱ 96.50(6)°.

Symmetry operations i: x, -y, z; ii: 2-x, -y, 1-z.

收稿日期:2004-12-15。收修改稿日期:2005-03-03。

国家杰出青年基金项目(No.20225103),高等教育博士专用研究基金项目(No.20030284001)资助。

^{*}通讯联系人。E-mail:Xiongrg@netra.nju.edu.cn

第一作者:李咏华,男,博士;研究方向:功能配合物。

displays strong blue fluorescent emission. Bi is one kind of main group metal and its coordination to nor-floxacin should result in the fluorescent enhancement. As expected, the fluorescent intensity of 1 ($\lambda_{e,max}$ =446 nm, Fig.3) is about ten times as that of free ligand, but a red shift in the fluorescent emission of 1 is ob-

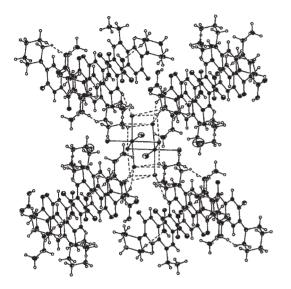


Fig.2 Packing view of 1 along a-axis

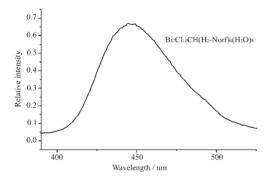


Fig.3 Fluorescent emission of 1 at the solid state at room temperature

served probably due to there existing many supramolecular weak interactions in its solid state.

Experiment

Hydrothermal treatment of BiCl₃ (0.3 mmol), norfloxacin (0.6 mmol), water (1.0 mL) and methanol (1.0 mL) over two days at 130 °C yielded pale yellow block crystals. The yield was about 40% based on norfloxacin. Intensity data were collected at 293(2) K on a Bruker AXS SMART CCD for a colorless block 0.10 mm × 0.15 mm × 0.20 mm. $C_{32}H_{46}BiCl_5F_2N_6O_{10}$, M=1.098.98, monoclinic, C_2/m , a=1.421.6(2) nm, b=2.576.2(4) nm, c=1.259.8(2) nm, $\beta=95.028(3)^\circ$, V=4.596.0(13) nm³, Z=4, 6.647 unique data ($\theta_{max}=30.0^\circ$), R=0.042.(4.214) [$I \ge 2\sigma(I)$] reflections), wR=0.106 (all data), $\rho_{max}=0.013.90$ e·nm³; water-H were not located. Programs used: SAINT, SADABS, SHELX-97, ORTEP.

CCDC: 238237.

Acknowledgements: This work was supported by the Distinguished Young Scholar Fund to R.-G. Xiong (No. 20225103) and the Specialized Research Fund for the Doctoral Program of Higher Education (No.20030284001).

References:

- [1] Chen Z F, Xiong R G, Zuo J L, et al. J. Chem. Soc., Dalton Trans., 2000,22:4013~4014
- [2] Chen Z F, Xiong R G, Zhang J, et al. *Inorg. Chem.*, 2001, 40:4075~4078
- [3] Wang L Z, Chen Z F, Wang X S, et al. Chin. J. Inorg. Chem., 2002,18:1185~1189